Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 241) Show all publications
Sallam, A., Hemeda, S., Toprak, M., Muhammed, M., Hassan, M. & Uheida, A. (2019). CT Scanning and MATLAB Calculations for Preservation of Coptic Mural Paintings in Historic Egyptian Monasteries. Scientific Reports, 9, Article ID 3903.
Open this publication in new window or tab >>CT Scanning and MATLAB Calculations for Preservation of Coptic Mural Paintings in Historic Egyptian Monasteries
Show others...
2019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 3903Article in journal (Refereed) Published
Abstract [en]

Investigations of Coptic mural paintings in historic churches and monasteries demand a deep understanding of the micro structure of the mural painting layers. The main objective of the present study is to study the efficiency of new avenues of computed X-ray tomography (CT Scan) and MATLAB in the analysis of Coptic mural paintings, either in the form of images or videos made to collect information about the physical characteristics of the material structure of the layers of mural paintings. These advanced techniques have been used in the investigation of samples of Coptic mural paintings dating back to the V-VIII century A.D, which have been collected from several locations in the Coptic monasteries in Upper Egypt. The application of CT-scanning is a powerful non-destructive tool for imaging and investigation which can be applied to the preservation of monuments made from many different materials. The second stage of research will be to characterize the materials through analytical techniques including XRD, XRF, EDX and FTIR to confirm the findings of CT scanning and to provide additional information concerning the materials used and their deterioration processes. This paper presents the results of the first pilot study in which CT scan and MATLAB have been utilized in combination for the non-destructive evaluation and investigation of Coptic mural paintings in Upper Egypt. The examinations have been carried out on mural painting samples from three important Coptic monasteries in Upper Egypt: the Qubbat Al Hawa Monastery in Aswan, the Saint Simeon Monastery in Aswan and the Saint Matthew the Potter Monastery in Luxor. This multi-stranded investigation has provided us with important information about the physical structure of the paintings, grains dimensions, grain texture, pore media characterization which include the micro porosity, BET and TPV, surface rendering, and calculation of the points in the surface through calculations completed using MATLAB. CT scanning assisted in the investigation and analyses of image surface details, and helped to visualize hidden micro structures that would otherwise be inaccessible due to over painting.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-247812 (URN)10.1038/s41598-019-40297-z (DOI)000460508600133 ()30846738 (PubMedID)2-s2.0-85062614465 (Scopus ID)
Note

QC 20190401

Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2019-04-01Bibliographically approved
Al-Farsi, H. M., Al-Adwani, S., Ahmed, S., Vogt, C., Ambikan, A. T., Leber, A., . . . Bergman, P. (2019). Effects of the Antimicrobial Peptide LL-37 and Innate Effector Mechanisms in Colistin-Resistant Klebsiella pneumoniae With mgrB Insertions. Frontiers in Microbiology, 10, Article ID 2632.
Open this publication in new window or tab >>Effects of the Antimicrobial Peptide LL-37 and Innate Effector Mechanisms in Colistin-Resistant Klebsiella pneumoniae With mgrB Insertions
Show others...
2019 (English)In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 2632Article in journal (Refereed) Published
Abstract [en]

Background Colistin is a polypeptide antibiotic drug that targets lipopolysaccharides in the outer membrane of Gram-negative bacteria. Inactivation of the mgrB-gene is a common mechanism behind colistin-resistance in Klebsiella pneumoniae (Kpn). Since colistin is a cyclic polypeptide, it may exhibit cross-resistance with the antimicrobial peptide LL-37, and with other innate effector mechanisms, but previous results are inconclusive. Objective To study potential cross-resistance between colistin and LL-37, as well as with other innate effector mechanisms, and to compare virulence of colistin-resistant and susceptible Kpn strains. Materials/Methods Carbapenemase-producing Kpn from Oman (n = 17) were subjected to antimicrobial susceptibility testing and whole genome sequencing. Susceptibility to colistin and LL-37 was studied. The surface charge was determined by zeta-potential measurements and the morphology of treated bacteria was analyzed with electron microscopy. Bacterial survival was assessed in human whole blood and serum, as well as in a zebrafish infection-model. Results Genome-analysis revealed insertion-sequences in the mgrB gene, as a cause of colistin resistance in 8/17 isolates. Colistin-resistant (Col-R) isolates were found to be more resistant to LL-37 compared to colistin-susceptible (Col-S) isolates, but only at concentrations >= 50 mu g/ml. There was no significant difference in surface charge between the isolates. The morphological changes were similar in both Col-R and Col-S isolates after exposure to LL-37. Finally, no survival difference between the Col-R and Col-S isolates was observed in whole blood or serum, or in zebrafish embryos. Conclusion Cross-resistance between colistin and LL-37 was observed at elevated concentrations of LL-37. However, Col-R and Col-S isolates exhibited similar survival in serum and whole blood, and in a zebrafish infection-model, suggesting that cross-resistance most likely play a limited role during physiological conditions. However, it cannot be ruled out that the observed cross-resistance could be relevant in conditions where LL-37 levels reach high concentrations, such as during infection or inflammation.

Place, publisher, year, edition, pages
FRONTIERS MEDIA SA, 2019
Keywords
cross-resistance, colistin, LL-37, innate immunity, zeta potential, whole blood killing assay, serum killing assay, zebrafish
National Category
Clinical Medicine
Identifiers
urn:nbn:se:kth:diva-266309 (URN)10.3389/fmicb.2019.02632 (DOI)000501260900001 ()31803163 (PubMedID)2-s2.0-85076028573 (Scopus ID)
Note

QC 20200107

Available from: 2020-01-07 Created: 2020-01-07 Last updated: 2020-01-09Bibliographically approved
Wärnheim, A., Toprak, M., Ahniyaz, A., Swerin, A. & Abitbol, T. (2019). Nanocellulose-based hybrid materials for optical applications. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Nanocellulose-based hybrid materials for optical applications
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:kth:diva-257626 (URN)000478860502461 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-12-20Bibliographically approved
Jermy, B. R., Ravinayagam, V., Alamoudi, W. A., Almohazey, D., Dafalla, H., Allehaibi, L. H., . . . Somanathan, T. (2019). Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation. Beilstein Journal of Nanotechnology, 10, 2217-2228
Open this publication in new window or tab >>Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation
Show others...
2019 (English)In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 10, p. 2217-2228Article in journal (Refereed) Published
Abstract [en]

The combination of magnetic nanoparticles with a porous silica is a composite that has attracted significant attention for potential multifunctional theranostic applications. In this study, 30 wt % CuFe2O4 was impregnated into a matrix of monodispersed spherical hydrophilic silica (HYPS) nanoparticles through a simple dry impregnation technique. The chemotherapy drug cisplatin was loaded through electrostatic equilibrium adsorption over 24 h in normal saline solution. The presence of cubic spinel CuFe2O4 on HYPS was confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and diffuse reflectance UV-vis spectroscopy (DR UV-vis) analysis. The HYPS particles showed a surface area of 170 m(2)/g, pore size of 8.3 nm and pore volume of 0.35 cm(3)/g. The cisplatin/CuFe2O4/HYPS nanoformulation showed the accumulation of copper ferrite nanoparticles on the surface and in the pores of HYPS with a surface area of 45 m(2)/g, pore size of 16 nm and pore volume of 0.18 cm(3)/g. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis showed the presence of homogeneous silica particles with nanoclusters of copper ferrite distributed on the HYPS support. Vibrating sample magnetometry (VSM) analysis of CuFe2O4/HYPS showed paramagnetic behavior with a saturated magnetization value of 7.65 emu/g. DRS UV-vis analysis revealed the functionalization of cisplatin in tetrahedral and octahedral coordination in the CuFe2O4/HYPS composite. Compared to other supports such as mesocellular foam and silicalite, the release of cisplatin using the dialysis membrane technique was found to be superior when CuFe2O4/HYPS was applied as the support. An in vitro experiment was conducted to determine the potential of CuFe2O4/HYPS as an anticancer agent against the human breast cancer cell line MCF-7. The results show that the nanoparticle formulation can effectively target cancerous cells and could be an effective tumor imaging guide and drug delivery system.

Place, publisher, year, edition, pages
BEILSTEIN-INSTITUT, 2019
Keywords
anticancer, cisplatin, copper ferrite, drug delivery, multifunctional, nanomedicine, nanotherapeutics, spherical silica, tumour therapy
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-264893 (URN)10.3762/bjnano.10.214 (DOI)000496462500001 ()
Note

QC 20191218

Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2019-12-18Bibliographically approved
Larsson, J. C., Vogt, C., Vågberg, W., Toprak, M., Dzieran, J., Arsenian-Henriksson, M. & Hertz, H. (2018). High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles. Physics in Medicine and Biology, 63, 164001
Open this publication in new window or tab >>High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles
Show others...
2018 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 63, p. 164001-Article in journal (Refereed) Published
Abstract [en]

Present macroscopic biomedical imaging methods provide either morphology with high spatial resolution (e.g. CT) or functional/molecular information with lower resolution (e.g. PET). X-ray fluorescence (XRF) from targeted nanoparticles allows molecular or functional imaging but sensitivity has so far been insufficient resulting in low spatial resolution, despite long exposure times and high dose. In the present paper, we show that laboratory XRF tomography with metal-core nanoparticles (NPs) provides a path to functional/molecular biomedical imaging with ~100 µm resolution in living rodents. The high sensitivity and resolution rely on the combination of a high-brightness liquid-metal-jet x-ray source, pencil-beam optics, photon-counting energy-dispersive detection, and spectrally matched NPs. The method is demonstrated on mice for 3D tumor imaging via passive targeting of in-house-fabricated molybdenum NPs. Exposure times, nanoparticle dose, and radiation dose agree well with in vivo imaging.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018
Keywords
x-ray, x-ray fluorescence, tomography, nanoparticles
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-233331 (URN)10.1088/1361-6560/aad51e (DOI)000441712300001 ()2-s2.0-85052501337 (Scopus ID)
Funder
Swedish Research CouncilWallenberg Foundations
Note

QC 20180828

Available from: 2018-08-15 Created: 2018-08-15 Last updated: 2018-10-16Bibliographically approved
Kertmen, A., Torruella, P., Coy, E., Yate, L., Nowaczyk, G., Gapinski, J., . . . Andruszkiewicz, R. (2017). Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core-Shell Structures upon Nanoemulsion Fusion. Langmuir, 33(39), 10351-10365
Open this publication in new window or tab >>Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core-Shell Structures upon Nanoemulsion Fusion
Show others...
2017 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 39, p. 10351-10365Article in journal (Refereed) Published
Abstract [en]

It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA(+)) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA(+)-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac-IONPs from IONPCs.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2017
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-217041 (URN)10.1021/acs.langmuir.7b02743 (DOI)000412718700025 ()28895402 (PubMedID)2-s2.0-85030677707 (Scopus ID)
Note

QC 20171101

Available from: 2017-11-01 Created: 2017-11-01 Last updated: 2018-02-26Bibliographically approved
Nikkam, N., Toprak, M., Dutta, J., Al-Abri, M., Myint, M. T., Souayeh, M. & Mohseni, S. M. (2017). Fabrication and thermo-physical properties characterization of ethylene glycol-MoS2 heat exchange fluids. International Communications in Heat and Mass Transfer, 89, 185-189
Open this publication in new window or tab >>Fabrication and thermo-physical properties characterization of ethylene glycol-MoS2 heat exchange fluids
Show others...
2017 (English)In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 89, p. 185-189Article in journal (Refereed) Published
Abstract [en]

This study reports on the fabrication and thermo-physical properties evaluation of ethylene glycol (EG) based heat exchange fluids containing molybdenum disulfide nanoparticles (MoS2 NPs) and micrometer sized particles (MPs). For this purpose, MoS2 NPs and MPs (with average size of 90 nm and 1.2 mu m; respectively) were dispersed and stabilized in EG with particle loading of 0.25, 0.5, 1 wt%. To study the real effect of MoS2 NP/MP the use of surfactants was avoided and ultrasonic agitation was used for dispersion and preparation of stable MoS2 NFs/MFs. The objectives were investigation of impact of MoS2 particle size (including NP/MP) and particle loading on thermo-physical properties of EG based MoS2 NFs/MFs including thermal conductivity (TC) and viscosity of NFs/MFs at 20 degrees C. All suspensions (NFs/MFs) exhibited a higher TC than the EG as base liquid and NFs showed higher TC enhancement values than the MFs. A TC enhancement of 16.4% was observed for NFs containing 1 wt % MoS2 NPs while the maximum increase in viscosity of 9.7% was obtained for the same NF at 20 degrees C. It indicates this NF system may have some potential to be utilized in heat transfer applications.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2017
Keywords
MoS2 nanoparticles, MoS2 microparticles, Nanofluids, Microfluids thermal conductivity, Viscosity, Thermo-physical property
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-221874 (URN)10.1016/j.icheatmasstransfer.2017.10.011 (DOI)000419412500021 ()
Note

QC 20180131

Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2018-01-31Bibliographically approved
Toprak, M., Li, S. & Muhammed, M. (2017). Fabrication routes for nanostructured TE material architectures. In: Materials, Preparation, and Characterization in Thermoelectrics: (pp. 17-1-17-18). CRC Press
Open this publication in new window or tab >>Fabrication routes for nanostructured TE material architectures
2017 (English)In: Materials, Preparation, and Characterization in Thermoelectrics, CRC Press , 2017, p. 17-1-17-18Chapter in book (Other academic)
Abstract [en]

Nanomaterials have been an emerging œeld of research due to the novel properties exhibited when the size of building blocks is reduced below 100 nm. Several size-dependent phenomena make nanomaterials attractive in terms of potential applicability compared to their larger-sized counterparts, justifying the importance and attention of this research.1-3 For thermoelectric research, nanomaterials are of great interest due to the possibility of decoupling electrical and thermal transport properties which may help attain higher ZT values for the currently available materials.4,5 še commonly accepted nomenclature of nanomaterials is based on the number of degrees of freedom of charge carriers for the description of their dimensionalities. šus, a thin œlm or superlattice is conœned in one dimension, but is a 2D nanomaterial. Similarly, a nanowire is conœned in two dimensions, hence is a 1D nanomaterial, and œnally a nanoparticle is conœned in three dimensions and is therefore a 0D nanomaterial. In the case of larger nanocrystals (not quantum conœned), the size and shape of the nanocrystals also affect their properties due to differences in surface-to-volume ratio. Bulk nanostructured (NS) TE materials are fabricated using a bulk process rather than a nanofabrication process, which has the important advantage of being produced in large quantities and in a form that is compatible with commercially available devices.6 šey are different from the advanced low-dimensional TE materials as they are consolidated under high T and P, resulting in larger-sized (40-200 nm) grains. še advanced low-dimensional TE materials are usually in quantum size and have well-deœned shapes such as rod-like or tube-like structures. še nanoeffects of bulk NS TE materials will not be as strong as in the case of advanced low-dimensional TE materials, but since the material is closer to bulk material, it can be easily handled the same way as bulk TE materials using conventional TE module/device technology for further steps toward direct applications. So far, of all the NS materials, only bulk NS materials have been produced in enough quantity to be used in this manner. 

Place, publisher, year, edition, pages
CRC Press, 2017
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-236811 (URN)10.1201/b11891 (DOI)2-s2.0-85051958883 (Scopus ID)9781439874714 (ISBN)9781439874707 (ISBN)
Note

QC 20190107

Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-01-07Bibliographically approved
Mohamed, A., Yousef, S., Ali Abdelnaby, M., Osman, T. A., Hamawandi, B., Toprak, M. S., . . . Uheida, A. (2017). Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Separation and Purification Technology, 182, 219-223
Open this publication in new window or tab >>Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers
Show others...
2017 (English)In: Separation and Purification Technology, ISSN 1383-5866, E-ISSN 1873-3794, Vol. 182, p. 219-223Article in journal (Refereed) Published
Abstract [en]

This work describes the enhanced mechanical properties of the composite nanofibers and the photodegradation of two organic dyes using PAN/CNTs under UV irradiation at different volume concentration (0.05, 0.1, 0.2, and 0.3 wt.%). The composite nanofibers was performed with polyacrylonitrile (PAN), and carbon nanotubes (CNTs) by electrospinning process. The composite nanofibers structure and morphology is characterized by XRD, FTIR, SEM, and TEM. The result indicates that with increasing CNTs content, the mechanical properties of the composite nanofibers was enhanced, and became more elastic, and the elastic modulus increased drastically. The results of mechanical properties exhibit improvements in tensile strengths, and elastic modulus by 38% and 84% respectively, at only 0.05 wt.% CNTs. Moreover, photocatalytic degradation performance in short time and low power intensity was achieved comparison to earlier reports.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Composite nanofibers, Mechanical properties, Photodegradation, Carbon, Carbon nanotubes, Elastic moduli, Irradiation, Tensile strength, Yarn, Electrospinning process, Organic dye, Photo catalytic degradation, Polyacrylonitrile (PAN), Structure and morphology, UV irradiation, Volume concentration, Nanofibers
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-207443 (URN)10.1016/j.seppur.2017.03.051 (DOI)000401393700025 ()2-s2.0-85016937303 (Scopus ID)
Note

QC 20170523

Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-06-14Bibliographically approved
Mohamed, A., Osman, T. A., Toprak, M. S., Muhammed, M. & Uheida, A. (2017). Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere, 180, 108-116
Open this publication in new window or tab >>Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions
Show others...
2017 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 180, p. 108-116Article in journal (Refereed) Published
Abstract [en]

A novel composites nanofiber was synthesized based on PAN-CNT/TiO2-NH2 nanofibers using electrospinning technique followed by chemical modification of TiO2 NPs. PAN-CNT/TiO2-NH2 nanofiber were characterized by XRD, FTIR, SEM, and TEM. The effects of various experimental parameters such as initial concentration, contact time, and solution pH on As removal were investigated. The maximum adsorption capacity at pH 2 for As(III) and As(V) is 251 mg/g and 249 mg/g, respectively, which is much higher than most of the reported adsorbents. The adsorption equilibrium reached within 20 and 60 min as the initial solution concentration increased from 10 to 100 mg/L, and the data fitted well using the linear and nonlinear pseudo first and second order model. Isotherm data fitted well to the linear and nonlinear Langmuir, Freundlich, and Redlich-Peterson isotherm adsorption model. Desorption results showed that the adsorption capacity can remain up to 70% after 5 times usage. This work provides a simple and an efficient method for removing arsenic from aqueous solution.

Place, publisher, year, edition, pages
Elsevier Ltd, 2017
Keywords
Arsenic adsorption, Composite nanofibers, Electrospinning, Isotherm, Kinetics
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-207283 (URN)10.1016/j.chemosphere.2017.04.011 (DOI)000401880500013 ()2-s2.0-85017101033 (Scopus ID)
Note

QC 20170619

Available from: 2017-06-19 Created: 2017-06-19 Last updated: 2017-06-19Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5678-5298

Search in DiVA

Show all publications