Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 118) Show all publications
Jahn, I., Bessegato, L., Björk, J., Hohn, F., Norrga, S., Svensson, N., . . . Despouys, O. (2019). A Proposal for Open-Source HVDC Control. In: : . Paper presented at 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe).
Open this publication in new window or tab >>A Proposal for Open-Source HVDC Control
Show others...
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Future multiterminal high-voltage direct-current (HVDC) grids are considered an enabling technology to efficiently integrate large amounts of renewable energy into the existing grid. However, already in today’s existing point-to-point HVDC links, harmonic interaction issues and instabilities related to the controland protection system of the converters have been reported. The converter control software is usually black-boxed and problems are therefore solved in close cooperation with the HVDC vendor. This paper aims to provide a starting point for a discussion onan open-source HVDC control system. In particular, it covers the control design including technical and non-technical aspects. The open-source approach can be useful to solve current as wellas future control-related problems, both in point-to-point links as well as in multiterminal and multivendor HVDC grids.

Keywords
HVDC transmission, Open source software
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-257736 (URN)
Conference
2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
Note

QC 20190917

Available from: 2019-09-03 Created: 2019-09-03 Last updated: 2019-10-14Bibliographically approved
Johannesson, N. & Norrga, S. (2019). Contribution of travelling wave propagation time to the speed of optical link protections in multi-terminal high-voltage DC systems. IET Generation, Transmission & Distribution, 13(14), 3078-3085
Open this publication in new window or tab >>Contribution of travelling wave propagation time to the speed of optical link protections in multi-terminal high-voltage DC systems
2019 (English)In: IET Generation, Transmission & Distribution, ISSN 1751-8687, E-ISSN 1751-8695, Vol. 13, no 14, p. 3078-3085Article in journal (Refereed) Published
Abstract [en]

During faults in multi-terminal high-voltage DC systems, the disturbance will quickly become evident throughout the entire system. If DC breakers are included in such systems, the entire fault clearing process needs to occur within a few milliseconds. Therefore, DC line protection schemes based on telecommunication have previously been discarded by some authors as their performance is constrained by the communication delay. However, telecommunication-based detection methods offer some very favourable features, one being that selectivity can be achieved without coordination of settings. In this study, several telecommunication-based protection schemes are evaluated with regards to their minimum possible detection time when considering telecommunication delay. It is shown that they perform best during faults located at the remote end of a line, i.e. fault locations that are difficult to reliably detect using single-ended methods. Therefore, it is reasonable that the most reliable protection system will consist of both single-ended and communication-based methods because they complement each other well. Furthermore, it is shown that the travelling wave differential protection offers the shortest theoretical detection time due to the wave propagation delay being included in the formulation.

Place, publisher, year, edition, pages
Institution of Engineering and Technology, 2019
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-255739 (URN)10.1049/iet-gtd.2019.0344 (DOI)000476558800019 ()2-s2.0-85069442033 (Scopus ID)
Note

QC 20190813

Available from: 2019-08-13 Created: 2019-08-13 Last updated: 2019-08-13Bibliographically approved
Bessegato, L., Ilves, K., Harnefors, L., Norrga, S. & Östlund, S. (2019). Control and Admittance Modeling of an AC/AC Modular Multilevel Converter for Railway Supplies. IEEE transactions on power electronics
Open this publication in new window or tab >>Control and Admittance Modeling of an AC/AC Modular Multilevel Converter for Railway Supplies
Show others...
2019 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107Article in journal (Refereed) In press
Abstract [en]

Modular multilevel converters (MMCs) can be configured to perform ac/ac conversion, which makes them suitable as railway power supplies. In this paper, a hierarchical control scheme for ac/ac MMCs for railway power supplies is devised and evaluated, considering the requirements and the operating conditions specific to this application. Furthermore, admittance models of the ac/ac MMC are developed, showing how the suggested hierarchical control scheme affects the three-phase and the single-phase side admittances of the converter. These models allow for analyzing the stability of the interconnected system using the impedance-based stability criterion and the passivity-based stability assessment. Finally, the findings presented in this paper are validated experimentally, using a down-scaled MMC. 

Keywords
Modular multilevel converters, ac/ac converters, current control, voltage control, admittance, frequency-domain analysis, linearization techniques, stability, railway engineering.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-248130 (URN)
Note

QC 20190404

Available from: 2019-04-04 Created: 2019-04-04 Last updated: 2019-08-19Bibliographically approved
Bakas, P., Okazaki, Y., Ilves, K., Norrga, S., Harnefors, L. & Nee, H.-P. (2019). Design considerations and comparison of hybrid line-commutated and cascaded full-bridge converters with reactive-power compensation and active filtering capabilities. In: : . Paper presented at 2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe).
Open this publication in new window or tab >>Design considerations and comparison of hybrid line-commutated and cascaded full-bridge converters with reactive-power compensation and active filtering capabilities
Show others...
2019 (English)Conference paper, Published paper (Other academic)
Abstract [en]

This paper compares two hybrid topologies that combine the line-commutated converter (LCC) with cascaded full-bridge (FB) converters. The latter are utilized for compensating the reactive power and filtering the current harmonics of the LCC. The method that was developed for dimensioning these hybrid topologies is presented in detail. This method is utilized for calculating the arm voltage and current waveforms, which are used to estimate other important quantities, such as conduction losses and energy variations. Finally, the studied converters are compared in terms of voltage/current ratings, semiconductor requirements, conduction losses, and energy variations.

Keywords
Converter circuit, HVDC, Multilevel converters, Thyristor.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-262671 (URN)978-9-0758-1530-6 (ISBN)
Conference
2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe)
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, SP8
Note

QC 20191018

Available from: 2019-10-17 Created: 2019-10-17 Last updated: 2019-10-18Bibliographically approved
Bessegato, L., Ilves, K., Harnefors, L. & Norrga, S. (2019). Effects of Control on the AC-Side Admittance of a Modular Multilevel Converter. IEEE transactions on power electronics, 34(8), 7206-7220, Article ID 8514034.
Open this publication in new window or tab >>Effects of Control on the AC-Side Admittance of a Modular Multilevel Converter
2019 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 34, no 8, p. 7206-7220, article id 8514034Article in journal (Refereed) Published
Abstract [en]

The stability of a modular multilevel converter connected to an ac grid can be assessed by analyzing the converter ac-side admittance in relation to the grid impedance. The converter control parameters have a strong impact on the admittance and they can be adjusted for achieving system stability. This paper focuses on the admittance-shaping effect produced by different current-control schemes, either designed on a per-phase basis or in the $dq$ frame using space vectors. A linear analytical model of the converter ac-side admittance is developed, including the different current-control schemes and the phase-locked loop. Different solutions for computing the insertion indices are also analyzed, showing that for a closed-loop scheme a compact expression of the admittance is obtained. The impact of the control parameters on the admittance is discussed and verified experimentally, giving guidelines for designing the system in terms of stability. Moreover, recommendations on whether a simplified admittance expression could be used instead of the detailed model are given. The findings from the admittance-shaping analysis are used to recreate a grid-converter system whose stability is determined by the control parameters. The developed admittance model is then used in this experimental case study, showing that the stability of the interconnected system can be assessed using the Nyquist stability criterion.

Place, publisher, year, edition, pages
IEEE Press, 2019
Keywords
Modular multilevel converters, admittance, current control, stability, frequency-domain analysis, linearization techniques.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-238818 (URN)10.1109/TPEL.2018.2878600 (DOI)000469912200014 ()2-s2.0-85055681354 (Scopus ID)
Note

QC 20181113

Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2019-06-26Bibliographically approved
Bakas, P., Ilves, K., Norrga, S., Harnefors, L. & Nee, H.-P. (2019). Hybrid alternate-common-arm converter with director thyristors: Impact of commutation time on the active-power capability. In: Proc. 2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe), IEEE and EPE Association, Genova, Italy, Sep. 2-6, 2019: . Paper presented at 2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe), Genova, Italy, Sep. 2-6, 2019. Genova, Italy: IEEE and EPE Association
Open this publication in new window or tab >>Hybrid alternate-common-arm converter with director thyristors: Impact of commutation time on the active-power capability
Show others...
2019 (English)In: Proc. 2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe), IEEE and EPE Association, Genova, Italy, Sep. 2-6, 2019, Genova, Italy: IEEE and EPE Association , 2019Conference paper, Published paper (Other academic)
Abstract [en]

This paper investigates the impact of the thyristor commutation time on the peak currents and the active power capability of the hybrid alternate-common-arm converter (HACC). This converter employs director thyristors for the alternate connection of a common arm in parallel to the main arms. The parallel connection enables current sharing among the arms, which allows the HACC to transfer higher output power without increasing the peak arm current. It is shown that the active-power capability of the HACC is doubled for a certain current-sharing factor, which, however, is altered by the thyristor commutation time. Therefore, the impact of the commutation time on the active-power capability of the HACC is investigated theoretically. Finally, this analysis is verified by simulation results.

Place, publisher, year, edition, pages
Genova, Italy: IEEE and EPE Association, 2019
Keywords
Converter circuit, HVDC, Multilevel converters, Thyristor.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-262670 (URN)978-9-0758-1530-6 (ISBN)
Conference
2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe), Genova, Italy, Sep. 2-6, 2019
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, SP8
Note

QC 20191018

Available from: 2019-10-17 Created: 2019-10-17 Last updated: 2019-10-21Bibliographically approved
Heinig, S., Jacobs, K., Ilves, K., Bessegato, L., Bakas, P., Norrga, S. & Nee, H.-P. (2019). Implications of Capacitor Voltage Imbalance on the Operation of the Semi-Full-Bridge Submodule. IEEE transactions on power electronics, 34(10), 9520-9535, Article ID 8598807.
Open this publication in new window or tab >>Implications of Capacitor Voltage Imbalance on the Operation of the Semi-Full-Bridge Submodule
Show others...
2019 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 34, no 10, p. 9520-9535, article id 8598807Article in journal (Refereed) Published
Abstract [en]

Future meshed high-voltage direct current grids require modular multilevel converters with extended functionality. One of the most interesting new submodule topologies is the semi-full-bridge because it enables efficient handling of DC-side short circuits while having reduced power losses compared to an implementation with full-bridge submodules. However, the semi-full-bridge submodule requires the parallel connection of capacitors during normal operation which can cause a high redistribution current in case the voltages of the two submodule capacitors are not equal. The maximum voltage difference and resulting redistribution current have been studied analytically, by means of simulations and in a full-scale standalone submodule laboratory setup. The most critical parameter is the capacitance mismatch between the two capacitors. The experimental results from the full-scale prototype show that the redistribution current peaks at 500A if the voltage difference is 10V before paralleling and increases to 2500A if the difference is 40V. However, neglecting very unlikely cases, the maximum voltage difference predicted by simulations is not higher than 20-30V for the considered case. Among other measures, a balancing controller is proposed which reduces the voltage difference safely if a certain maximum value is surpassed. The operating principle of the controller is described in detail and verified experimentally on a down-scaled submodule within a modular multilevel converter prototype. It can be concluded that excessively high redistribution currents can be prevented. Consequently, they are no obstacle for using the semi-full-bridge submodule in future HVDC converters.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2019
Keywords
AC-DC power conversion, HVDC converters, HVDC transmission, Power transmission, Fault tolerance, Power system faults
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-240824 (URN)10.1109/TPEL.2018.2890622 (DOI)000474581900016 ()2-s2.0-85068640873 (Scopus ID)
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, CPC4
Note

QC 20190107

Available from: 2019-01-03 Created: 2019-01-03 Last updated: 2019-07-31Bibliographically approved
Chaffey, G., Jahn, I., Loenders, R., Leterme, W., Dejene, F. Z., Wang, M., . . . Van Hertem, D. (2019). Requirements for functional testing of HVDC protection IEDs. In: : . Paper presented at CIGRE B4 International Colloquium 1st - 4th October 2019 Johannesburg, South Africa.
Open this publication in new window or tab >>Requirements for functional testing of HVDC protection IEDs
Show others...
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Development of Intelligent Electronic Devices (IED) for HVDC protection is underway, driven in part by the prospective demands of future multiterminal HVDC systems. There is, however, no consensus on how to test the functionality of an HVDC protection IED. Successful operation of a future multivendor HVDC protection system requires functional specifications and harmonised test procedures for protection system components, including the protection IED. This paper presents an introduction to functional testing methods for HVDC protection IEDs. Evaluating the protection algorithm characteristic using synthetic waveforms is first performed, i.e. ’functional type testing’. Given that test procedures are in part dependent on the protection algorithm, tests are developed and presented for several algorithms. The behaviour of the IED in a power system simulation is then examined during generalised yet representative fault transients, i.e. equivalent to ’dynamic validation type testing’ of AC protection algorithms. The combination of functional and dynamic validation type testing allows the generalised functionality of the IED to be evaluated - testing the algorithm, hardware and software implementation, and overall performance. To provide examples of test procedures, an open-source HVDC IED prototype is tested in a hardware-in-the-loop configuration using a real-time simulator. The operation and accuracy of the protection characteristics are first examined, before the IED performance under representative waveforms is determined. Through tests of several non-unit line protection algorithms, it is shown that, depending on the algorithm applied, the IED is dependable for simulated faults within the protection zone, and secure during external faults. Moreover,the test configurations and procedures required to evaluate the functionality and the criteria for success are developed.

Keywords
HVDC protection, Functional type testing, Dynamic validation type testing, Real-time simulation, HVDC relaying, HVDC protection IED, Hardware in the loop, Standardisation, Harmonisation.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-260572 (URN)
Conference
CIGRE B4 International Colloquium 1st - 4th October 2019 Johannesburg, South Africa
Note

QCR 20191015

Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2019-10-18Bibliographically approved
Ciftci, B., Gross, J., Norrga, S. & Nee, H.-P. (2019). Simple Distributed Control for Modular Multilevel Converters. In: : . Paper presented at 21st European Conference on Power Electronics and Applications. Brussels: European Power Electronics and Drives Association
Open this publication in new window or tab >>Simple Distributed Control for Modular Multilevel Converters
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

The central control of MMC becomes demanding in computation power and communication bandwidth as the number of submodules increase. Distributed control methods can overcome these bottlenecks. In this paper, a simple distributed control method together with synchronization of modulation carriers in the submodules is presented. The proposal is implemented on a lab-scale MMC with asynchronous-serial communication on a star network between the central and local controllers. It is shown that the proposed control method works satisfactorily in the steady state. The method can be applied as is to MMCs with any number of submodules per arm.

Place, publisher, year, edition, pages
Brussels: European Power Electronics and Drives Association, 2019. p. 10
Keywords
Multilevel converters, Digital control, Field Programmable Gate Array (FPGA), Communication for Power Electronics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-257886 (URN)978-9-0758-1530-6 (ISBN)
Conference
21st European Conference on Power Electronics and Applications
Note

QC 20190916

Available from: 2019-09-07 Created: 2019-09-07 Last updated: 2019-09-16Bibliographically approved
Bessegato, L., Harnefors, L., Ilves, K. & Norrga, S. (2018). A Method for the Calculation of the AC-Side Admittance of a Modular Multilevel Converter. IEEE transactions on power electronics
Open this publication in new window or tab >>A Method for the Calculation of the AC-Side Admittance of a Modular Multilevel Converter
2018 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107Article in journal (Refereed) Published
Abstract [en]

Connecting a modular multilevel converter to anac grid may cause stability issues, which can be assessed byanalyzing the converter ac-side admittance in relation to the gridimpedance. This paper presents a method for calculating theac-side admittance of modular multilevel converters, analyzingthe main frequency components of the converter variables individually.Starting from a time-averaged model of the converter,the proposed method performs a linearization in the frequencydomain, which overcomes the inherent nonlinearities of theconverter internal dynamics and the phase-locked loop usedin the control. The ac-side admittance obtained analytically isfirstly validated by simulations against a nonlinear time-averagedmodel of the modular multilevel converter. The tradeoff posedby complexity of the method and the accuracy of the result isdiscussed and the magnitude of the individual frequency componentsis shown. Finally, experiments on a down-scaled prototypeare performed to validate this study and the simplification onwhich it is based.

Keywords
Modular multilevel converters, admittance, linearization techniques, frequency-domain analysis, stability.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-238815 (URN)10.1109/TPEL.2018.2862254 (DOI)000464911900018 ()2-s2.0-85050974319 (Scopus ID)
Note

QC 20181113

Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2019-05-14Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8565-4753

Search in DiVA

Show all publications