Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 56) Show all publications
Fasci, M. L., Lazzarotto, A., Acuña, J. & Claesson, J. (2018). Shallow Geothermal Heat Pumps: a study of the resource potential at a neighbourhood scale.. In: : . Paper presented at ICNTSE 2018.
Open this publication in new window or tab >>Shallow Geothermal Heat Pumps: a study of the resource potential at a neighbourhood scale.
2018 (English)Conference paper, Published paper (Refereed)
Abstract [en]

The residential sector accounts for a relevant share of global energy use; therefore it is important to use as much renewable energy as possible to satisfy its demand. Geothermal energy, among others, is nowadays used for this scope: more and more buildings in several countries are exploiting the underground to satisfy domestic heating, cooling and hot water demand by means of ground-source heat pumps. On the long run heat extraction/injection can lead to depletion of the ground as heat source/sink. Current tools only allow a designer to take into account the depletion of the ground caused by the system she or he is designing. However, the actual total heat depletion is also influenced by the surrounding systems. With the growing diffusion of ground-source heat pumps the ability of estimating the total underground heat depletion is of paramount importance. The aim of the article is to give an insight of the problem: the goal is to show what will happen in the underground if residential ground source heat pump systems are designed without taking into account the presence of neighbouring installations. The study is performed for different types of soil and borehole heat exchangers designs.

Keywords
Ground source heat pumps, thermal influence, neighbouring boreholes, geothermal sustainability
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-246395 (URN)
Conference
ICNTSE 2018
Note

QCR 20190402

Available from: 2019-03-19 Created: 2019-03-19 Last updated: 2019-04-02Bibliographically approved
Claesson, J., Hill, P. & Björk, F. (2016). Slutrappport - Värmestugan – effektiviseringskoncept av bergvärme/solpanel/energilager - Utvärdering KTH: Diarienummer: 2013-006655. KTH Royal Institute of Technology
Open this publication in new window or tab >>Slutrappport - Värmestugan – effektiviseringskoncept av bergvärme/solpanel/energilager - Utvärdering KTH: Diarienummer: 2013-006655
2016 (Swedish)Report (Other academic)
Abstract [sv]

Föreliggande projekt syftar till att utvärdera funktionen på ett bergvärmepumpsbaserat uppvärmningssystem för småhus med korta borrhål. För att kompensera för det korta borrhålet när en ny större och effektivare värmepump installeras har kollektorsystemet (dvs. borrhålssystemet) kompletterats med en solfångare kombinerad luftkonvektor, ”energikollektor”. Energikollektorns syfte är att tillföra energi till värmepumpens kalla sida, så att energiuttaget ur borrhålet inte ökar mot tidigare med den ersatta värmepumpen.

Systemet har utrustats med flertalet energimätare samt en värmepumpsanalysator som samlar in och lagrar driftdata för systemet. Dessa driftdata visar för en dag i april, 2016, att energiuttaget ur kollektorsystemet via värmepumpen helt har kompensats av tillförd energi från energikollektorn. Dygnets medeltemperatur för detta dygn var 8.6 °C. Detta tyder på att syftet med systemet är uppfyllt och funktionen är den som initialt efterfrågades.

Långtidsmätningar har inte gått att genomföra än, då installation av själva energisystemet, dvs. Värmestugan, försenats. Det intressantaste för en framtida studie är att se hur mycket energi, på årsbasis, som energikollektorn tillför kollektorsystemet, i förhållande till bortförd energi via värmepumpen. Det kunde noteras för undersökt dygn att temperaturen av vätskan in i värmepumpen signifikant ökade då energikollektorn tillförde energi. Kan detta även noteras sett över en årscykel? Solenergi som tillförs under varma tiden på året måste finnas kvar under uppvärmningssäsongen (dvs. ge en höge kollektorsystemtemperatur).

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. p. 41
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-187445 (URN)
Funder
Swedish Energy Agency, Diarienummer: 2013-006655
Note

QC 20160524

Available from: 2016-05-23 Created: 2016-05-23 Last updated: 2016-05-24Bibliographically approved
Wallin, J. & Claesson, J. (2014). Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger. Sustainable Energy Technologies and Assessments, 8, 109-119
Open this publication in new window or tab >>Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger
2014 (English)In: Sustainable Energy Technologies and Assessments, ISSN 2213-1388, E-ISSN 2213-1396, Vol. 8, p. 109-119Article in journal (Refereed) Published
Abstract [en]

The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24. h drain water flow rate schedules and one shorter schedule representing a three minute shower.The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Keywords
Coiled heat exchanger, Drain water heat recovery, Falling film heat exchanger, Heat pump heat recovery
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-148780 (URN)10.1016/j.seta.2014.08.003 (DOI)2-s2.0-84907169290 (Scopus ID)
Note

QC 20150317. Updated from accepted to published.

Available from: 2014-08-11 Created: 2014-08-11 Last updated: 2017-12-05Bibliographically approved
Claesson, J. & Stare, J. (2014). Bergvärme kombinerat med uteluftkonvektor – Förbättrad SPF i stadsdelar med hög andel bergvärme. KYLA+ Värmepumpar
Open this publication in new window or tab >>Bergvärme kombinerat med uteluftkonvektor – Förbättrad SPF i stadsdelar med hög andel bergvärme
2014 (Swedish)In: KYLA+ Värmepumpar, ISSN 1100-343XArticle in journal (Other (popular science, discussion, etc.)) Published
Abstract [sv]

Att använda en uteluftkonvektor som kompletteringskälla är intressant för de installationer som finns i stadsdelar där avståndet till grannhål är kort. Genom återladdning kan ett nästan balanserat energiuttag ur berget erhållas och därmed nästan ett ”hållbart” energisystem. Projektet har visat att även om det (även för enskilda hål) ges mer gynnsamma förhållanden för konvektorn äts nyttan upp av de ökande driveffekterna för pump och fläkt. Noggrann analys behöver alltså göras innan dylikt system implementeras. För stadsdelar som Bromma kan det dock vara intressant för att dels undvika oväntade stopp av värmepumpen pga. för kalla brinetemperaturer, dels få ett balanserat energiuttag ur berget genom återladdning.

Place, publisher, year, edition, pages
Stockholm: Kylentreprenörernas Förening, 2014
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-178856 (URN)
Funder
Swedish Energy Agency
Note

Qc 20151210

Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2015-12-10Bibliographically approved
Stare, J. & Claesson, J. (2014). Bergvärme kombinerat meduteluftkonvektor. Eskilstuna: Energimyndigheten
Open this publication in new window or tab >>Bergvärme kombinerat meduteluftkonvektor
2014 (Swedish)Report (Other academic)
Abstract [sv]

I detta arbete har problematiken kring befintliga bergvärmeanläggningar som varit i drift imånga år och är dags att byta ut undersökts. Fokus har varit på en specifik frågeställning, kandet finnas någon nytta med att komplettera befintlig värmekälla (bergkollektorn) med enuteluftkonvektor. Anledningen är de faktum att

1. Nya värmepumpar är effektivare än gamla.

2. Ny ”praxis” vid dimensionering gör att värmepumpar väljs relativt större än tidigare.

3. I en del områden är det väldigt tätt mellan hålen, vilket gör att dessa kan påverkarvarandra.

En effektivare värmepump använder, vid samma värmeavgivning till huset, mindre elektriskenergi, vilket betyder att större mängd energi tas upp ur hålet. Detta leder till försämradeförutsättningar för effektiv värmepumpsdrift och prestandan för värmepumpen kan blibetydligt sämre än förväntat.I detta arbete har ett stort antal variationer på en nyinstallerad värmepump undersökts för ett(av många möjliga) typiskt hus. Dels har det studerats hur en gammal byts mot ny, ny medkompletterande konvektor och ny med konvektor som även återladdar borrhålet. Även nyvärmepump med avbrottskriterier vid för kall brine samt borrhålsfält har studerats. Dessutomny värmepump dimensionerad enligt ”äldre” praxis, dvs 50 % effekttäckning vid DVUTistället för 70 %.Simuleringarna visar visserligen att konvektor i sig självt, och vid återladdning gervärmepumpen bättre driftsförutsättning, men inte tillräckligt för att kompensera för dedriveffekter som behövs för pump och fläkt som tillkommer vid dessa systemlösningar. Förborrhålsfält blir driftpunkten vid riktigt låga temperaturer, och i dessa fall kan värmepumpenvia styrsystemet stänga av kompressorn. I dessa fall visar sig konvektorn med återladdningsignifikant öka årsvärmefaktorn i förhållande till att inte installera den.Vidare visar simuleringarna att dimensionera den nya värmepumpen efter gammal praxis(50 % effekttäckning) tillsammans med luftkonvektorn och återladdning ger, trots ökatkyleffekt i värmepumpen, en driftpunkt som är jämförbar med den gamla. Det innebär attfinns det från början inga driftstörningar i form av avstängd värmepump har konvektorn medåterladdning den inverkan att problem inte kan förväntas med den nya effektivarevärmepumpen, trots det större momentana effektuttag en ny har.För alla andra fall kommer det nya systemet att betyda kallare energibrunn med risk förframtida driftsproblem.

Place, publisher, year, edition, pages
Eskilstuna: Energimyndigheten, 2014. p. 61
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-178852 (URN)
Projects
Uppgradering av bergvärmesystem vid utbyte av äldre värmepump – Komplettering med uteluftsdel
Funder
Swedish Energy Agency
Note

QC 20151211

Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2015-12-11Bibliographically approved
Wallin, J. & Claesson, J. (2014). Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel. Applied Thermal Engineering, 62(2), 823-829
Open this publication in new window or tab >>Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel
2014 (English)In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 62, no 2, p. 823-829Article in journal (Refereed) Published
Abstract [en]

The world is facing a challenge to reduce energy use to meet the environmental goals set for the future. One factor that has a great impact on the energy performance of buildings is the ventilation losses. To handle these losses, heat recovery systems with rotating heat exchanger are often implemented. These systems have been shown to recover about 60-70% of the energy in the exhaust air on an annual basis. After a heat recovery system is installed it is hard to improve the efficiency of the installed recovery system with an acceptable economic payback period. In the present paper one way to improve the energy performance of a building with this type of heat recovery system by the use of a heat pump is investigated by simulations in TrnSys. The heat pump system is arranged so that the evaporator is connected to a heat exchanger mounted in the exhaust airstream after the energy wheel, and the condenser of the heat pump is mounted so that the temperature of return water from the heating coil is increased. The simulations show that there is a possibility to increase the heat recovery rate of the air handling unit in a significant way by retrofitting a heat pump to the system.

Keywords
Efficiency, Heat pump retrofit, Ventilation heat recovery, Air handling units, Energy performance, Energy performance of buildings, Heat pumps, Heat recovery systems, Payback periods, Recovery systems, Energy efficiency, Heat pump systems, Investments, Retrofitting, Waste heat, Waste heat utilization
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-139972 (URN)10.1016/j.applthermaleng.2013.09.059 (DOI)000330910700058 ()2-s2.0-84889835558 (Scopus ID)
Note

QC 20140121

Available from: 2014-01-21 Created: 2014-01-16 Last updated: 2017-12-06Bibliographically approved
Wallin, J. & Claesson, J. (2014). Investigating the Efficiency of a Vertical Inline Drain Water Heat Recovery Heat Exchanger in a System Boosted with a Heat Pump. Energy and Buildings, 80, 7-16
Open this publication in new window or tab >>Investigating the Efficiency of a Vertical Inline Drain Water Heat Recovery Heat Exchanger in a System Boosted with a Heat Pump
2014 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 80, p. 7-16Article in journal (Refereed) Published
Abstract [en]

In the present study, the performance of a vertical inline drain water heat recovery heat exchanger is investigated. The system recovers the heat with the aid of a heat pump. To produce quality measurement data for the analysis special attention have been given to the calibration of sensors and the analysis of the propagation of uncertainty. The results from the analysis of the heat exchanger reveal that the contact resistance between the two copper pipes and the heat resistances on the inside of the drain water pipe are the dominating resistances to the heat transfer. Investigation of the heat recovery ratio shows that the heat exchanger has the capability to recover more than 25% of the available heat in the drain water at the flow rates investigated.

Keywords
Drain water heat recovery, Heat pump heat recovery, Coiled heat exchanger, Falling film heat transfer
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-148779 (URN)10.1016/j.enbuild.2014.05.003 (DOI)000343949400002 ()2-s2.0-84901983207 (Scopus ID)
Note

QC 20140825

Available from: 2014-08-11 Created: 2014-08-11 Last updated: 2017-12-05Bibliographically approved
Madani, H., Claesson, J. & lundqvist, P. (2013). A descriptive and comparative analysis of three common control techniques for an on/off controlled Ground Source Heat Pump (GSHP) system. Energy and Buildings, 65, 1-9
Open this publication in new window or tab >>A descriptive and comparative analysis of three common control techniques for an on/off controlled Ground Source Heat Pump (GSHP) system
2013 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 65, p. 1-9Article in journal (Refereed) Published
Abstract [en]

In the present paper, three common methods in order to control an on/off controlled Ground Source Heat Pump (GSHP) system called "Constant hysteresis", "Floating hysteresis", and "Degree-Minute" methods are comprehensively described. Then, the generic model already developed by the authors is used in order to do the dynamic simulation of the systems with three different control methods over a year and making the comparison between them. The results from annual modeling of the systems show that the mean temperature of the heating water supplied to the building for the system controlled with degree-minute method is always close to the required temperature, regardless of the climatic boundary conditions over a typical year, whereas, the average supply temperature for the system with constant hysteresis method is mostly higher or lower than the required temperature, depending on the boundary condition. Regarding the annual energy use, the degree-minute and constant hysteresis methods have the lowest and highest annual energy use respectively. Switching from constant hysteresis to floating hysteresis method, the annual energy use will become lower and the mean temperature of the heating water supplied to the building will be closer to the required one.

Keywords
Heat pump, Control, Modeling, Simulation, Ground source, Regulation, Geothermal, Capacity
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-102070 (URN)10.1016/j.enbuild.2013.05.006 (DOI)000324449800001 ()2-s2.0-84879484943 (Scopus ID)
Funder
Swedish Energy Agency
Note

QC 20150630

Available from: 2012-09-07 Created: 2012-09-07 Last updated: 2017-12-07Bibliographically approved
Claesson, J. (2013). Performance Evaluation of Combined Heat Sources for Innovative Heat Pumps: Ground Source Combined With an Air Coil, Paper ID 650. In: : . Paper presented at CLIMA 201311th REHVA World Congress & 8th International Conference on IAQVEC, Prague, Czech Republic. Elsevier
Open this publication in new window or tab >>Performance Evaluation of Combined Heat Sources for Innovative Heat Pumps: Ground Source Combined With an Air Coil, Paper ID 650
2013 (English)Conference paper, Published paper (Refereed)
Abstract [en]

A significant amount of the Swedish single family houses have installed a ground source heat pump as primary energy source. Many of these installed heat pumps are due for replacement and the new installed heat pumps are generally more efficient. Thus, they extract more heat from the ground at a given heat load of the building. This fact combined with the early “rule of thumb” used by Swedish installers for sizing the borehole length means that many boreholes now are slightly undersized in terms of length.One obvious remedy is to drill some additional meters to the existing borehole. Other alternatives exist to offset this situation as well and two of these are that the borehole is assisted by either a solar collector or an outside air heat collector, similar type used for air-to-air heat pumps. The effect of such a measure is that less energy is extracted from the ground during the heating season, and the heat pump may operate at higher heat source temperatures. In addition, it may prevent or at least delay freezing of the borehole, which may occur late of the heating season for some installations.The present paper investigates the performance of such system and to compare the outcome of these three systems in terms of annual energy extraction rate from the ground. The results indicate that the proposed system indeed may offset the additional heat extraction that a new more efficient heat pump would otherwise cause.

Place, publisher, year, edition, pages
Elsevier, 2013
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-178853 (URN)
Conference
CLIMA 201311th REHVA World Congress & 8th International Conference on IAQVEC, Prague, Czech Republic
Funder
Swedish Energy Agency
Note

QC20160114

Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2016-01-14Bibliographically approved
Wallin, J., Madani, H. & Claesson, J. (2012). Run-around coil ventilation heat recovery system: A comparative study between different system configurations. Applied Energy, 90(1), 258-265
Open this publication in new window or tab >>Run-around coil ventilation heat recovery system: A comparative study between different system configurations
2012 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 90, no 1, p. 258-265Article in journal (Refereed) Published
Abstract [en]

The energy performance of buildings in cold climates, with a considerable annual heating demand, is dependent on the ventilation air change rates (ACH). Buildings utilized for commercial use often have high annual ventilation heating demand due to high ACH required from indoor air quality aspect. In order for these buildings to have a reasonable energy performance a heat recovery system is often used to recover heat from the exhaust air to the makeup air. There are different variations of these systems; one that is sometimes used in Sweden is a run around coil heat recovery system. The present paper summarizes the findings from previous studies [5-7], and presents a comparative study, for three different cases; the traditional run-around coil heat recovery system; with a three stage on/off controlled heat pump retrofitted into the system; and with a variable capacity heat pump retrofitted into the system. Annual modeling (using TRNSYS) shows that by retrofitting a well-designed 3 stage heat pump to the system the annual heat recovery rate for the Stockholm case can be increased from 47% to 65%. For a retrofitted variable speed capacity heat pump for the Stockholm case the annual heat recovery improves from 47% to 66%. The modeling also shows that a well designed variable speed heat pump can cover 81% of the total ventilation heating demand and a well designed multi stage heat pump 77% of the total ventilation heating demand.

Keywords
Run-around coil, Ventilation heat recovery, Performance factors, Retrofitted heat pump
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-58808 (URN)10.1016/j.apenergy.2011.05.012 (DOI)000297426100039 ()2-s2.0-80055039757 (Scopus ID)
Note
QC 20120109Available from: 2012-01-09 Created: 2012-01-09 Last updated: 2017-12-08Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-3896-2443

Search in DiVA

Show all publications