Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 50) Show all publications
Ström, P., Petersson, P., Rubel, M., Bergsåker, H., Bykov, I., Frassinetti, L., . . . et al., . (2019). Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 516, 202-213
Open this publication in new window or tab >>Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall
Show others...
2019 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 516, p. 202-213Article in journal (Refereed) Published
Abstract [en]

Inconel-600 blocks and stainless steel covers for quartz microbalance crystals from remote corners in the JET-ILW divertor were studied with time-of-flight elastic recoil detection analysis and nuclear reaction analysis to obtain information about the areal densities and depth profiles of elements present in deposited material layers. Surface morphology and the composition of dust particles were examined with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The analyzed components were present in JET during three ITER-like wall campaigns between 2010 and 2017. Deposited layers had a stratified structure, primarily made up of beryllium, carbon and oxygen with varying atomic fractions of deuterium, up to more than 20%. The range of carbon transport from the ribs of the divertor carrier was limited to a few centimeters, and carbon/deuterium co-deposition was indicated on the Inconel blocks. High atomic fractions of deuterium were also found in almost carbon-free layers on the quartz microbalance covers. Layer thicknesses up to more than 1 micrometer were indicated, but typical values were on the order of a few hundred nanometers. Chromium, iron and nickel fractions were less than or around 1% at layer surfaces while increasing close to the layer-substrate interface. The tungsten fraction depended on the proximity of the plasma strike point to the divertor corners. Particles of tungsten, molybdenum and copper with sizes less than or around 1 micrometer were found. Nitrogen, argon and neon were present after plasma edge cooling and disruption mitigation. Oxygen-18 was found on component surfaces after injection, indicating in-vessel oxidation. Compensation of elastic recoil detection data for detection efficiency and ion-induced release of deuterium during the measurement gave quantitative agreement with nuclear reaction analysis, which strengthens the validity of the results.

Keywords
Fusion, Tokamak, Plasma-wall interactions, ToF-ERDA, NRA, SEM
National Category
Fusion, Plasma and Space Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-240616 (URN)10.1016/j.jnucmat.2018.11.027 (DOI)000458897100020 ()2-s2.0-85060313456 (Scopus ID)
Note

QC 20190125

Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2019-08-08Bibliographically approved
Causa, F., Ratynskaia, S., Tolias, P. & Zito, P. (2019). Analysis of runaway electron expulsion during tokamak instabilities detected by a single-channel Cherenkov probe in FTU. Nuclear Fusion, 59(4), Article ID 046013.
Open this publication in new window or tab >>Analysis of runaway electron expulsion during tokamak instabilities detected by a single-channel Cherenkov probe in FTU
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046013Article in journal (Refereed) Published
Abstract [en]

The expulsion of runaway electrons (REs) during different types of tokamak instabilities is analysed by means of a Cherenkov probe inserted into the scrape-off layer of the FTU tokamak. One such type of instability, the well-known tearing mode, is involved in disruptive plasma termination events, during which the risk of RE avalanche multiplication is highest. The second type, known as anomalous Doppler instability, influences RE dynamics by enhancing pitch angle scattering. Three scenarios are analysed here, characterised by different RE generation rates and mechanisms. The main conclusions are drawn from correlations between the Cherenkov probe and other diagnostics. In particular, the Cherenkov probe permits the detection of fast electron expulsion with a high level of detail, presenting peaks with 100% signal contrast during tearing mode growth and rotation, and sub-peak structures reflecting the interplay between the magnetic island formed by the tearing mode, RE diffusion during island rotation and the geometry of obstacles in the vessel. Correlations between the Cherenkov signal, hard x-ray emission and electron cyclotron emission reveal the impulsive development of the anomalous Doppler instability with instability rise time in the microsecond scale resolved by the high time-resolution of the Cherenkov probe.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
plasma instabilities, Cherenkov probe, runaway electrons
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-245120 (URN)10.1088/1741-4326/aafe2a (DOI)000458897500001 ()
Note

QC 20190315

Available from: 2019-03-15 Created: 2019-03-15 Last updated: 2019-03-15Bibliographically approved
Labit, B., Frassinetti, L., Jonsson, T., Ratynskaia, S. V., Thorén, E., Tolias, P., . . . Zuin, M. (2019). Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nuclear Fusion, 59(8), Article ID 086020.
Open this publication in new window or tab >>Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 8, article id 086020Article in journal (Refereed) Published
Abstract [en]

Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (n(e,sep)/n(G) similar to 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
H-mode, type-II ELMs, grassy ELMs, plasma triangularity, separatrix density, ballooning modes
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-255302 (URN)10.1088/1741-4326/ab2211 (DOI)000473079500003 ()
Note

QC 20190807

Available from: 2019-08-07 Created: 2019-08-07 Last updated: 2019-08-07Bibliographically approved
Trier, E., Frassinetti, L., Fridström, R., Garcia Carrasco, A., Hellsten, T., Johnson, T., . . . Zuin, M. (2019). ELM-induced cold pulse propagation in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 61(4), Article ID 045003.
Open this publication in new window or tab >>ELM-induced cold pulse propagation in ASDEX Upgrade
Show others...
2019 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 4, article id 045003Article in journal (Refereed) Published
Abstract [en]

In ASDEX Upgrade, the propagation of cold pulses induced by type-I edge localized modes (ELMs) is studied using electron cyclotron emission measurements, in a dataset of plasmas with moderate triangularity. It is found that the edge safety factor or the plasma current are the main determining parameters for the inward penetration of the T-e perturbations. With increasing plasma current the ELM penetration is more shallow in spite of the stronger ELMs. Estimates of the heat pulse diffusivity show that the corresponding transport is too large to be representative of the inter-ELM phase. Ergodization of the plasma edge during ELMs is a possible explanation for the observed properties of the cold pulse propagation, which is qualitatively consistent with non-linear magneto-hydro-dynamic simulations.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
ELMs, MHD instabilities, stochastic field, magnetic islands, cold pulse
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-245121 (URN)10.1088/1361-6587/aaf9c3 (DOI)000458986000002 ()
Note

QC 20190315

Available from: 2019-03-15 Created: 2019-03-15 Last updated: 2019-05-20Bibliographically approved
Lucco Castello, F., Tolias, P., Hansen, J. S. & Dyre, J. C. (2019). Isomorph invariance and thermodynamics of repulsive dense bi-Yukawa one-component plasmas. Physics of Plasmas, 26(5), Article ID 053705.
Open this publication in new window or tab >>Isomorph invariance and thermodynamics of repulsive dense bi-Yukawa one-component plasmas
2019 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 26, no 5, article id 053705Article in journal (Refereed) Published
Abstract [en]

In numerous realizations of complex plasmas, dust-dust interactions are characterized by two screening lengths and are thus better described by a combination of Yukawa potentials. The present work investigates the static correlations and the thermodynamics of repulsive dense bi-Yukawa fluids based on the fact that such strongly coupled systems exhibit isomorph invariance. The strong virial-potential energy correlations are demonstrated with the aid of molecular dynamics simulations, an accurate analytical expression for the isomorph family of curves is obtained, and an empirical expression for the fluid-solid phase-coexistence line is proposed. The isomorph-based empirically modified hypernetted-chain approach, grounded on the ansatz of isomorph invariant bridge functions, is then extended to such systems and the resulting structural properties show an excellent agreement with the results of computer simulations. A simple and accurate closed-form expression is obtained for the excess internal energy of dense bi-Yukawa fluids by capitalizing on the compact parameterization offered by the Rosenfeld-Tarazona decomposition in combination with the Rosenfeld scaling, which opens up the energy route to thermodynamics.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-254174 (URN)10.1063/1.5100150 (DOI)000470877600073 ()2-s2.0-85066085294 (Scopus ID)
Note

QC 20190620

Available from: 2019-06-20 Created: 2019-06-20 Last updated: 2019-07-29Bibliographically approved
Tolias, P. & Castello, F. L. (2019). Isomorph-based empirically modified hypernetted-chain approach for strongly coupled Yukawa one-component plasmas. Physics of Plasmas, 26(4), Article ID 043703.
Open this publication in new window or tab >>Isomorph-based empirically modified hypernetted-chain approach for strongly coupled Yukawa one-component plasmas
2019 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 26, no 4, article id 043703Article in journal (Refereed) Published
Abstract [en]

Isomorph theory is employed in order to establish a mapping between the bridge function of Coulomb and Yukawa one-component plasmas. Within an exact invariance ansatz for the bridge functions and by capitalizing on the availability of simulation-extracted Coulomb bridge functions, an analytical Yukawa bridge function is derived which is inserted into the integral theory framework. In spite of its simplicity and computational speed, the proposed integral approach exhibits an excellent agreement with computer simulations of dense Yukawa liquids without invoking adjustable parameters. 

Place, publisher, year, edition, pages
AMER INST PHYSICS, 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-252653 (URN)10.1063/1.5089663 (DOI)000466708400090 ()2-s2.0-85064396368 (Scopus ID)
Note

QC 20190610

Available from: 2019-06-10 Created: 2019-06-10 Last updated: 2019-06-10Bibliographically approved
Blanken, T. C., Frassinetti, L., Fridström, R., Garcia-Carrasco, A., Hellsten, T., Jonsson, T., . . . Dori, V. (2019). Real-time plasma state monitoring and supervisory control on TCV. Nuclear Fusion, 59(2), Article ID 026017.
Open this publication in new window or tab >>Real-time plasma state monitoring and supervisory control on TCV
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed) Published
Abstract [en]

In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2019
Keywords
real-time control, supervisory control, control of tokamak plasmas
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-242971 (URN)10.1088/1741-4326/aaf451 (DOI)000455823900003 ()
Note

QC 20190212

Available from: 2019-02-12 Created: 2019-02-12 Last updated: 2019-02-12Bibliographically approved
Tolias, P., De Angeli, M., Riva, G., Ratynskaia, S. V., Daminelli, G., Laguardia, L., . . . Vassallo, E. (2019). The adhesion of tungsten dust on plasma-exposed tungsten surfaces. Nuclear Materials and Energy, 18, 18-22
Open this publication in new window or tab >>The adhesion of tungsten dust on plasma-exposed tungsten surfaces
Show others...
2019 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 18, p. 18-22Article in journal (Refereed) Published
Abstract [en]

The adhesion of tungsten dust is measured on plasma-exposed and non-exposed tungsten substrates with the electrostatic detachment method. Tungsten substrates of comparable surface roughness have been exposed to the deuterium plasmas of the GyM linear device and the argon plasmas of rf glow discharges under conditions which invariably modify the surface composition due to physical sputtering. The adhesion has been systematically characterized for different spherical nearly monodisperse dust populations. Independent of the dust size, an approximate 50% post-exposure reduction of the average and spread of the adhesive force has been consistently observed and attributed to surface chemistry modifications.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2019
Keywords
Dust adhesion, Pull-off force, Dust remobilization, Electrostatic detachment, Adsorbates, Sputtering
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-247856 (URN)10.1016/j.nme.2018.12.002 (DOI)000460107500004 ()
Note

QC 20190326

Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2019-03-26Bibliographically approved
Tierens, W., Frassinetti, L., Hellsten, T., Petersson, P., Fridström, R., Garcia Carrasco, A., . . . et al., . (2019). Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments. Nuclear Fusion, 59(4), Article ID 046001.
Open this publication in new window or tab >>Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046001Article in journal (Refereed) Published
Abstract [en]

In this paper we validate the finite element code RAPLICASOL, which models radiofrequency wave propagation in edge plasmas near ICRF antennas, against calculations with the TOPICA code. We compare the output of both codes for the ASDEX Upgrade 2-strap antenna, and for a 4-strap WEST-like antenna. Although RAPLICASOL requires considerably fewer computational resources than TOPICA, we find that the predicted quantities of experimental interest (including reflection coefficients, coupling resistances, S- and Z-matrix entries, optimal matching settings, and even radiofrequency electric fields) are in good agreement provided we are careful to use the same geometry in both codes.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
ICRF, finite elements, simulation
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-243928 (URN)10.1088/1741-4326/aaf455 (DOI)000456197200001 ()
Note

QC 20190212

Available from: 2019-02-12 Created: 2019-02-12 Last updated: 2019-02-12Bibliographically approved
Vignitchouk, L., Delzanno, G. L., Tolias, P. & Ratynskaia, S. V. (2018). Electron reflection effects on particle and heat fluxes to positively charged dust subject to strong electron emission. Physics of Plasmas, 25(6), Article ID 063702.
Open this publication in new window or tab >>Electron reflection effects on particle and heat fluxes to positively charged dust subject to strong electron emission
2018 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 6, article id 063702Article in journal (Refereed) Published
Abstract [en]

A new model describing dust charging and heating in unmagnetized plasmas in the presence of large electron emission currents is presented. By accounting for the formation of a potential well due to trapped emitted electrons when the dust is positively charged, this model extends the so-called OML+ approach, thus far limited to thermionic emission, by including electron-induced emission processes, and in particular low-energy quasi-elastic electron reflection. Revised semi-analytical formulas for the current and heat fluxes associated with emitted electrons are successfully validated against particle-in-cell simulations and predict an overall reduction of dust heating by up to a factor of 2. When applied to tungsten dust heating in divertor-like plasmas, the new model predicts that the dust lifetime increases by up to 80%, as compared with standard orbital-motion-limited estimates.

Place, publisher, year, edition, pages
AMER INST PHYSICS, 2018
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-232414 (URN)10.1063/1.5026384 (DOI)000437193700127 ()2-s2.0-85048606159 (Scopus ID)
Funder
EU, Horizon 2020, 633053Swedish Research CouncilLars Hierta Memorial Foundation
Note

QC 20180726

Available from: 2018-07-26 Created: 2018-07-26 Last updated: 2018-07-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9632-8104

Search in DiVA

Show all publications