Open this publication in new window or tab >>2023 (English)In: International Journal of STEM education, E-ISSN 2196-7822, Vol. 10, no 1, article id 62Article in journal (Refereed) Published
Abstract [en]
The literature asserts that science, technology, engineering, and mathematics (STEM) education needs to be authentic. Although models and modelling provide a basis from which to increase authenticity by bridging the STEM disciplines, the idea of authentic STEM education remains challenging to define. In response, the aim of this study is to identify consensus on significant elements of authentic STEM education through models and modelling. Views were gathered anonymously over three rounds of questions with an expert panel. Responses were subjected to a multimethod analysis that pursued identification, consensus, and stability in the panel’s revealed propositions and themes around authentic STEM education through modelling.
The panel reached high consensus concerning the potential of STEM education to support learning across traditional subject borders through authentic problem solving. The panel also consented that modelling is indispensable for achieving real-world relevance in STEM education, and that model-based integrated STEM education approaches provide opportunities for authentic problem solving. Furthermore, results showed that integrating individual STEM subjects during teaching, in terms of including disciplinary knowledge and skills, requires specialised competence. Here, technology and engineering subjects tended to implicitly underpin communicated teaching activities aimed at STEM integration.
The panellists stress that STEM disciplines should be taught collaboratively at the same time as they are not in favour of STEM as a subject of its own but rather as a cooperation that maintains the integrity of each individual subject. Many respondents mentioned integrated STEM projects that included modelling and engineering design, although they were not specifically labelled as engineering projects. Thus, real-world STEM education scenarios are often viewed as being primarily technology and engineering based. The panel responses also implicate a need for multiple definitions of authenticity for different educational levels because a great deal of uncertainty surrounding authenticity seems to originate from the concept implying different meanings for different STEM audiences. These international Delphi findings can potentially inform integrated STEM classroom interventions, teacher education development, educational resource and curriculum design.
Place, publisher, year, edition, pages
Springer Nature, 2023
Keywords
Authentic STEM education, Delphi method, Models, Modelling
National Category
Didactics Other Engineering and Technologies Other Natural Sciences
Research subject
Technology and Learning
Identifiers
urn:nbn:se:kth:diva-338826 (URN)10.1186/s40594-023-00453-4 (DOI)001087887100001 ()2-s2.0-85175066064 (Scopus ID)
Funder
Swedish Research Council, 2020-03441Linköpings universitet
Note
QC 20231030
2023-10-272023-10-272025-02-10Bibliographically approved