Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 15) Show all publications
Morfeldt, J. (2017). Tracking Emissions Reductions and Energy Efficiency in the Steel Industry. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Tracking Emissions Reductions and Energy Efficiency in the Steel Industry
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The iron and steel industry has become increasingly globalised. Market conditions are also changing and de-carbonisation of production is challenging.

The objective of this thesis is to assess how energy efficiency and greenhouse gas emissions reductions can be promoted and effectively monitored in the steel industry. The thesis contributes with analyses based on the Malmquist Productivity Index for a top-down analysis of the energy efficiency of EU Member States’ iron and steel production, and Partial Least Squares regression for bottom-up assessments of different monitoring tools. The thesis also contributes with a scrap availability assessment module to enhance the energy system model ETSAP-TIAM.

The first phase of the research showed that future production needs to shift towards innovative low-CO2 technologies even when all available recycled material is fully used. Techniques using carbon capture and storage (CCS) as well as hydrogen-based technologies can be expected to become economically viable under tightened climate policies.

The second phase of the research showed that current indicators are insufficient. System boundaries of energy use and emissions data do not align with production statistics. Indicators based on energy use or emissions in relation to production in physical terms may be useful to track specific processes. However, current indicators fail to reflect the companies’ product mix. Enhanced energy and climate indicators that adjust for the product mix provide better estimates while failing to reflect the increasing globalisation.

Effective monitoring of industrial transformation will be increasingly important as pressure from climate policy via global CO2-pricing is unlikely in the short term. Current or enhanced indicators do not fully capture industrial transformation and are not recommended. Future research should focus on defining indicators to estimate energy use and emissions along industrial value chains in climate policy contexts.

Abstract [sv]

Järn- och stålindustrin har blivit alltmer globaliserad. Marknadsvillkoren förändras samtidigt som utfasningen av fossila bränslen är utmanande.

Målet med den här avhandlingen är att bedöma hur energieffektivitet och växthusgasutsläppsminskningar kan främjas och effektivt utvärderas inom stålindustrin. Avhandlingen bidrar med analyser baserade Malmquists produktivitetsindex för att analysera energieffektivitet av EU:s medlemsstaters järn- och stålproduktion, och partiell minsta- kvadrat-regression för att bedöma olika utvärderingsmått. Avhandlingen bidrar även med en modul som bedömer skrottillgång för att förbättra energisystemmodellen ETSAP-TIAM.

I en första fas visade forskningen att framtida produktion behöver ställas om mot innovativa teknologier med låga CO2-utsläpp även när allt tillgängligt återvunnet material används fullt ut. Tekniker som använder koldioxidinfångning och -lagring (CCS) samt vätebaserade teknologier kan förväntas bli ekonomiskt försvarbara under åtstramade klimatpolitiska styrmedel.

I en andra fas visade forskningen att nuvarande indikatorer är otillräckliga. Systemgränser för energianvändnings- och växthusgasutsläppsdata stämmer inte överens med produktionsstatistik. Indikatorer utifrån energianvändning eller utsläpp i relation till fysisk produktion kan vara användbara för att följa upp specifika processer. Nuvarande indikatorer lyckas dock inte spegla företagens produktmix. Förbättrade energi- och klimatindikatorer som justerar för produktmixen ger bättre uppskattningar, men speglar inte branschens ökande globalisering.

Effektiv utvärdering av industriell transformation blir alltmer viktig då påtryckning från klimatpolitiska styrmedel via global CO2-prissättning är kortsiktigt osannolik. Nuvarande eller förbättrade indikatorer fångar inte industriell transformation fullt ut och rekommenderas inte. Framtida forskning bör fokusera på att definiera indikatorer som uppskattar energianvändning och växthusgasutsläpp längs industriella värdekedjor. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. p. 98
Series
TRITA-ECS Report ; 17/01
Keywords
energy efficiency, greenhouse gas emissions reductions, indicators, iron and steel industry, systems analysis, energieffektivitet, växthusgasutsläppsminskning, indikatorer, järn- och stålbranschen, systemanalys
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-205882 (URN)978-91-7729-382-8 (ISBN)
Public defence
2017-06-02, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20170428

Available from: 2017-04-28 Created: 2017-04-28 Last updated: 2017-04-28Bibliographically approved
Xylia, M., Silveira, S. & Morfeldt, J. (2016). Implications of an energy efficiency obligation scheme for the Swedish energy-intensive industries: an evaluation of costs and benefits. Energy Efficiency, 1-19
Open this publication in new window or tab >>Implications of an energy efficiency obligation scheme for the Swedish energy-intensive industries: an evaluation of costs and benefits
2016 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, p. 1-19Article in journal (Refereed) Published
Abstract [en]

The EU Energy Efficiency Directive (EED) aims at improving energy efficiency by implementing actions in all sectors of the economy in the EU. Article 7 of the EED sets the target of 1.5 % cumulative annual energy end-use savings. An energy efficiency obligation scheme (EEO) is one of the policy mechanisms proposed to reach this target. This paper assesses the impact of implementing a Swedish EEO and the implications that such a scheme may have for Swedish energy-intensive industries. The assessment was based on cost-benefit analysis (CBA) methodology. The benefit-to-cost ratio (BCR) ranges from 1.56 to 2.17 and the break-even cost ranges from 83.3 to 86.9 €/MWh with sensitivity analyses performed for the emission allowance prices and eventual costs of the EEO. The annual energy savings potential is estimated to be 1.25 TWh/year. A Swedish EEO could motivate investments in energy efficiency measures and thus help Sweden reach the energy efficiency targets set in the EED.

Place, publisher, year, edition, pages
Elsevier, 2016
Keywords
Energy efficiency obligation scheme, Cost-benefit analysis, Industrial energy efficiency, Energy efficiency directive, Sweden
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-185749 (URN)10.1007/s12053-016-9446-7 (DOI)000394263100009 ()2-s2.0-84964240147 (Scopus ID)
Note

QC 20161010

Available from: 2016-04-26 Created: 2016-04-26 Last updated: 2017-11-30Bibliographically approved
Morfeldt, J., Silveira, S., Hirsch, T., Lindqvist, S., Nordqvist, A., Pettersson, J. & Pettersson, M. (2015). Economic and operational factors in energy and climate indicators for the steel industry. Energy Efficiency, 8(3)
Open this publication in new window or tab >>Economic and operational factors in energy and climate indicators for the steel industry
Show others...
2015 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 3Article in journal (Refereed) Published
Abstract [en]

European steel producers need to increase energy efficiency and reduce CO2 emissions to meet requirements set by European policies. Robust indicators are needed to follow up these efforts. This bottom-up analysis of traditional energy and climate indicators is based on plant level data from three Swedish steel producers with different product portfolios and production processes. It concludes that indicators based on both physical and economic production are interlinked with aspects both within and outside the company gates. Results estimated with Partial Least Squares Regression (PLSR) confirm that steel production has complex relationships with markets, societal context and operational character of the industry. The study concludes that: (i) physical indicators (based on crude steel production) may be useful at the process level, but not at the industry-wide level, (ii) the value added is not a reliable alternative since it cannot be properly estimated for companies belonging to larger international groups, and (iii) structural shifts may influence the results significantly, and veil improvements made at the process level. Finally, harmonized system boundary definitions are vital for making indicators comparable between companies. The use of traditional indicators, as defined today, may lead to uninformed decisions at the company as well as policy levels.

Keywords
specific energy consumption, CO2 emissions, physical and economic indicators, industrial evaluation, iron and steel industry
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-148579 (URN)10.1007/s12053-014-9296-0 (DOI)000353824300004 ()2-s2.0-84907653015 (Scopus ID)
Note

Updated from from submitted to published.

QC 20150521

Available from: 2014-08-08 Created: 2014-08-08 Last updated: 2017-12-05Bibliographically approved
Morfeldt, J., Silveira, S., Hirsch, T., Lindqvist, S., Nordqvist, A., Pettersson, J. & Pettersson, M. (2015). Improving energy and climate indicators for the steel industry: the case of Sweden. Journal of Cleaner Production, 107, 581-592
Open this publication in new window or tab >>Improving energy and climate indicators for the steel industry: the case of Sweden
Show others...
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 107, p. 581-592Article in journal (Refereed) Published
Abstract [en]

Energy and climate indicators are required for monitoring and controlling the effectiveness of regional as well as national initiatives towards increasing energy efficiency and reducing carbon dioxide (CO2) emissions. Indicators are also needed for monitoring measures implemented within companies. Recent studies show that traditional energy efficiency indicators do not capture product differentiation or value creation in the steel industry, while observed trends capture structural shifts instead. In this study, methods combining physical and techno-economic perspectives on energy and CO2 efficiency are proposed for alleviating these problems. The methods were evaluated using data from three Swedish steel producers. The results compensate for structural shifts when focused on physical production. When focused on economic production, the methods represent the value creation of the companies more strongly than traditional indicators. The proposed methods may be useful complements to traditional indicators for monitoring energy and CO2 efficiency. However, the trends show strong links with the economic climate, which may reduce companies’ possibilities of using the indicators for monitoring their own performance. The study confirms the high complexity in monitoring energy and CO2 efficiency within steel companies focused on high-value market segments. Further research is required in exploring issues related to data confidentiality, product portfolios and processes represented in the method, influence of external factors, and aggregating indicators at sectoral level.

Place, publisher, year, edition, pages
Elsevier, 2015
Keywords
energy efficiency, CO2 emissions, iron and steel, indicators
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-166749 (URN)10.1016/j.jclepro.2015.05.031 (DOI)000363071000057 ()2-s2.0-84942984054 (Scopus ID)
Projects
Robusta energi- och klimatindikatorer för stålindustrin
Funder
Swedish Energy Agency, 36365-1
Note

QC 20150615

Available from: 2015-05-15 Created: 2015-05-15 Last updated: 2017-12-04Bibliographically approved
Morfeldt, J., Silveira, S., Hirsch, T., Lindqvist, S., Pettersson, M., Pettersson, J. & Nordqvist, A. (2015). Robusta energi- och klimatindikatorer för stålindustrin. Stockholm: Jernkontoret
Open this publication in new window or tab >>Robusta energi- och klimatindikatorer för stålindustrin
Show others...
2015 (Swedish)Report (Other academic)
Abstract [sv]

Traditionellt använda indikatorer för att utvärdera energieffektivisering och växthusgasutsläppsminskning är energi per ton av ett produktslag, energi per förädlingsvärde, energi per produktionsvärde, växthusgasutsläpp per ton av ett produktslag, växthusgasutsläpp per förädlingsvärde samt växthusgasutsläpp per produktionsvärde. Inom järn- och stålsektorn används framför allt den fysiska indikatorn energi per producerat ton råstål. Detta forskningsprojekt har haft som mål att utvärdera och vidareutveckla energiindikatormetodologin. Sandvik Materials Technology (SMT), Höganäs Sweden AB och SSAB EMEA deltagit med detaljerade, specifika, företagsdata och insikter i produktion och marknad. Företagen representerar olika sätt att framställa stål i Sverige och kan därför anses i ett vidare perspektiv representera svensk stålindustri. Ett stort steg har tagits genom att skapa en bättre förståelse för hur företags strukturer och verksamheter påverkas av olika externa faktorer och på vilket sätt det speglas i de traditionella energieffektivitetsindikatorerna. Traditionella indikatorer är idag inte robusta nog att användas för att följa upp, eller styra, annat än separata processer inom företagen. De bör därför inte utgöra underlag för lagstiftning eller tillståndsprövning. De mer vidareutvecklade indikatorerna, som tagits fram i denna studie, är inte heller tillräckligt robusta för att användas för styrning, men kommer till rätta med några av de effekter som påverkar de traditionella. Effektivitetsindex baserade på den fysiska produktionsindikatorn minskar påverkan av strukturförändringar. Den ekonomiska produktionsindikatorn fångar tydligt produktvärde, men är starkt kopplad till det ekonomiska klimatet. Antalet parametrar som påverkar energieffektiviseringen är stort och endast ett fåtal har fortfarande beaktats. Energieffektivisering som har gjorts inom ramen för PFE syns i resultaten. Det är viktigt att utvecklingsarbetet kring indikatorer fortsätter då energi- och CO2-effektivitet är en central fråga både för stålindustrin och för samhället.

Abstract [en]

Traditionally used indicators for evaluating energy efficiency and decrease of greenhouse gas emissions are energy per ton product, energy per value added, energy per production value, greenhouse gas emissions per ton product, greenhouse gas emissions per value added and greenhouse gas emission per production value. Within the iron and steel sector mainly the physical indicator energy per produced ton raw steel is used. This research project has aimed at evaluating and further developing the energy indicator methodology. Sandvik Materials Technology (SMT), Höganäs Sweden AB and SSAB EMEA have participated with detailed, specific, company data and deep understanding of production and market. The companies represent different ways of producing steel and can therefore in a wider perspective be seen as representing the Swedish steel industry. A large step forward has been taken by increasing the understanding for how company structures and activities are affected by different external factors and how that is mirrored in the traditional energy efficiency indicators. Traditional indicators are today not robust enough to use for monitoring or governance, other than of separate processes within the companies. They should therefore not be used as a basis for policy making or reconsideration and updating of permit conditions by authorities. The further developed indicators, presented in this work, are still not robust enough for governance, but alleviate some of the effects influencing the traditional indicators. The efficiency indexes based on the physical production indicator decreases the influence of structural changes. The economical production indicator captures the value creation in a better way, but is strongly connected to the economic climate. A large number of parameters affect energy efficiency and still only a few have been considered. Energy efficiency achieved within the PFE program is visible in the results. It is very important to continue the development of indicators since energy and CO2 efficiency are central issues for both the steel industry and the society.

Place, publisher, year, edition, pages
Stockholm: Jernkontoret, 2015. p. 20
Keywords
Energy efficiency, CO2 emissions, Energy indicators, CO2-indicators, governance, monitoring, specific energy consumption, iron and steel industry, traditional indicators, developed indicators
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-164974 (URN)
Projects
Robusta energi- och klimatindikatorer för stålindustrin
Funder
Swedish Energy Agency, P36365-1
Note

Qc 20150422

Available from: 2015-04-21 Created: 2015-04-21 Last updated: 2015-04-22Bibliographically approved
Morfeldt, J. & Silveira, S. (2014). Capturing energy efficiency in European iron and steel production: comparing specific energy consumption and Malmquist productivity index. Energy Efficiency, 7(6), 955-972
Open this publication in new window or tab >>Capturing energy efficiency in European iron and steel production: comparing specific energy consumption and Malmquist productivity index
2014 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 7, no 6, p. 955-972Article in journal (Refereed) Published
Abstract [en]

European iron and steel producers are working towards increased energy efficiency to meet requirements set by European policies such as the Energy Efficiency Directive. In this study, we show that the Specific Energy Consumption (SEC), representing the iron and steel sector in the Odyssee Energy Efficiency Index (ODEX) - the tool for policy evaluation recommended by the European Commission, is insufficient for capturing energy efficiency trends of European iron and steel production. European producers focus on niche markets, diversifying and specialising their set of products well beyond crude steel, which is the benchmark product for deriving the SEC. We compare the SEC with the more comprehensive Malmquist Productivity Index (MPI) methodology, which is calculated using Data Envelopment Analysis (DEA) techniques. An evaluation of energy efficiency trends during 2000 – 2010 showed that the SEC overestimated energy efficiency improvements for European steel industries, while underestimating the improvements achieved by Swedish steel industries. A comparison between the SEC, the MPI/DEA approach and energy intensity based on value added in the Swedish case provides further insight to the methodological differences between the approaches. We conclude that the approaches highlight different aspects of energy efficiency analyses, and that the SEC is not sufficient for capturing energy efficiency of steel industries.

Keywords
policy evaluation, energy efficiency, specific energy consumption, SEC, iron and steel production, Malmquist Productivity Index, Data Envelopment Analysis
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-144051 (URN)10.1007/s12053-014-9264-8 (DOI)000344533500003 ()2-s2.0-84920709109 (Scopus ID)
Funder
Swedish Energy Agency
Note

QC 20141204

Available from: 2014-04-07 Created: 2014-04-07 Last updated: 2017-04-28Bibliographically approved
Morfeldt, J. & Silveira, S. (2014). Methodological differences behind energy statistics for steel production – implications when monitoring energy efficiency. Energy, 77(SI), 391-396
Open this publication in new window or tab >>Methodological differences behind energy statistics for steel production – implications when monitoring energy efficiency
2014 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 77, no SI, p. 391-396Article in journal (Refereed) Published
Abstract [en]

Energy efficiency indicators used for evaluating industrial activities at the national level are often based on statistics reported in international databases. In the case of the Swedish iron and steel sector, energy consumption statistics published by Odyssee, Eurostat, the IEA (International Energy Agency), and the United Nations differ, resulting in diverging energy efficiency indicators. For certain years, the specific energy consumption for steel is twice as high if based on Odyssee statistics instead of statistics from the IEA. The analysis revealed that the assumptions behind the allocation of coal and coke used in blast furnaces as energy consumption or energy transformation are the major cause for these differences. Furthermore, the differences are also related to errors in the statistical data resulting from two different surveys that support the data. The allocation of coal and coke has implications when promoting resource as well as energy efficiency at the systems level. Eurostat's definition of energy consumption is more robust compared to the definitions proposed by other organisations. Nevertheless, additional data and improved energy efficiency indicators are needed to fully monitor the iron and steel sector's energy system and promote improvements towards a greener economy at large.

Keywords
energy and resource efficiency, iron and steel sector, energy use statistics
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-148578 (URN)10.1016/j.energy.2014.09.020 (DOI)000346542500044 ()2-s2.0-84909987499 (Scopus ID)
Funder
Swedish Energy Agency, 36365-1
Note

QC 20150213. Updated from accepted to published.

Available from: 2014-08-08 Created: 2014-08-08 Last updated: 2017-12-05Bibliographically approved
Morfeldt, J., Nijs, W. & Silveira, S. (2014). The impact of climate targets on future steel production - an analysis based on a global energy system model. Journal of Cleaner Production, 103, 469-482
Open this publication in new window or tab >>The impact of climate targets on future steel production - an analysis based on a global energy system model
2014 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 103, p. 469-482Article in journal (Refereed) Published
Abstract [en]

This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model, ETSAP-TIAM, was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand, recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However, as the global average of in-use steel stock increases up to the current average stock of the industrialised economies, global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap, more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials, particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050, provided that CCS is available. However, the increased prices are induced by COprices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap, whereas it shall have an impact on the price of scrap. Finally, the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.

Place, publisher, year, edition, pages
Elsevier, 2014
Keywords
ETSAP-TIAM, SAAM, steel production, technology choice, climate change
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-144837 (URN)10.1016/j.jclepro.2014.04.045 (DOI)000356990800045 ()2-s2.0-84899780306 (Scopus ID)
Note

QC 20150708

Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2017-12-05Bibliographically approved
Morfeldt, J. (2014). Tools for Evaluating Energy Efficiency of Steel Production: Lessons from Sweden and Europe. (Licentiate dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Tools for Evaluating Energy Efficiency of Steel Production: Lessons from Sweden and Europe
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The European Union faces challenges related to climate change, security of energy supply, and competitiveness of European industries. Energy efficiency indicators are required for monitoring and controlling the effectiveness of policies such as the recently endorsed Energy Efficiency Directive. This thesis aims at assessing whether traditionally used energy efficiency indicators capture the development of energy efficiency in the iron and steel sector. The study is based on results from two statistical methods: a top-down, i.e. Malmquist productivity index, and a bottom-up, i.e. partial least squares regression.

The specific energy consumption (the indicator representing the sector within the Odyssee energy efficiency index) was scrutinised together with associated indicators based on economic production using the aforementioned statistical methods. The results demonstrated the specific energy consumption does not capture the characteristics of the value chain of steel products. Therefore, it is not sufficient for capturing the energy efficiency of iron and steel industries. Previous studies suggest using indicators based on economic production (e.g. value added) since they represent the value chain to larger degree. However, the value creation process of companies belonging to larger international groups cannot be estimated reliably. Furthermore, the trends of both types of indicators tend to be highly influenced by structural changes, veiling the actual efficiency development.

Energy use statistics published by international organisations were also compared for the Swedish case. The results demonstrated that international organisations use different methodologies for allocating energy use statistics between consumption and transformation sectors. The method has significant implications on the trends observed, if based on openly available statistics.

This thesis complements previous research by reviewing implications of traditional energy efficiency indicators based on company data, national statistics or openly available statistics and contributes with insights essential for future efforts towards improving energy efficiency indicators for the steel industry.

Abstract [sv]

Den europeiska unionen står inför utmaningar relaterade till minskad klimatpåverkan, säkerställd energitillgång samt konkurrenskraften hos europeisk industri. Energieffektiviseringsindikatorer krävs för att övervaka och kontrollera effektiviteten hos energipolicy såsom det nyligen antagna energieffektiviseringsdirektivet. Den här avhandlingen syftar till att bedöma om traditionellt använda energieffektiviserings-indikatorer fångar järn- och stålsektorns utveckling inom energi-effektivitet. Studien är baserad på resultat från två statistiska metoder: en top-down-metod, Malmquists produktivitetsindex, och en bottom-up-metod, partiella minsta kvadratmetoden.

Den specifika energikonsumtionen – indikatorn som representerar sektorn i Odyssees energieffektiviseringsindex – granskades tillsammans med andra energieffektivitetsindikatorer med hjälp av de ovan nämnda statistiska metoderna. Resultaten visade att specifik energikonsumtion inte fångar karaktären av stålprodukternas värdekedjor. Indikatorn är därför inte tillräcklig för att fånga energieffektivitet inom järn- och stål-industrier. Tidigare studier föreslår att använda indikatorer baserade på ekonomisk produktion (exempelvis förädlingsvärdet) då de representerar värdekedjan till högre grad. Förädlingsvärdet kan dock inte uppskattas tillförlitligt för företag som tillhör större internationella grupper. Trend-erna hos båda typerna av indikatorer tenderar dessutom att påverkas av strukturella förändringar, vilka döljer den riktiga effektivitetsutvecklingen.

En jämförelse gjordes även av energianvändningsstatistik publicerad av olika internationella organisationer för det svenska fallet. Resultaten demonstrerade att internationella organisationer använder olika metoder för att allokera energianvändning mellan konsumtions- och omvandlings-sektorer i statistiken. Metoden påverkar observerade trender signifikant om de baseras på öppet tillgänglig statistik.

Avhandlingen kompletterar tidigare forskning genom att belysa innebörden av traditionella energieffektiviseringsindikatorer baserade på företagsdata, nationell statistik eller öppet tillgänglig statistik samt bidrar med insikter som kommer att vara väsentliga för framtida satsningar i att förbättra energieffektiviseringsindikatorer för stålindustrin. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. 50
Series
TRITA-ECS ; 14/03
Keywords
energy efficiency, indicators, iron and steel sector, systems analysis, energieffektivitet, indikatorer, järn- och stålsektorn, systemanalys
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-149348 (URN)978-91-7595-230-7 (ISBN)
Presentation
2014-09-19, Learning Theatre (M235), Brinellvägen 68, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2014-08-28 Created: 2014-08-20 Last updated: 2014-08-28Bibliographically approved
Morfeldt, J. & Silveira, S. (2013). Capturing Energy Efficiency in Iron and Steel Production: an Empirical Analysis Using DEA and MPI. In: : . Paper presented at 11th International Conference on Data Envelopment Analysis, 27-30 June 2013, Samsun, Turkey.
Open this publication in new window or tab >>Capturing Energy Efficiency in Iron and Steel Production: an Empirical Analysis Using DEA and MPI
2013 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

European iron and steel industries have to work towards increased energy efficiency of production to meet requirements set by EU policies, such as the Energy Efficiency Directive. However, current energy efficiency evaluation tools, such as the Specific Energy Consumption (SEC), give only crude estimates on the improvements in the context of iron and steel production. In this study, we survey the state-of-the-art in Malmquist Productivity Index (MPI) methodology and Data Envelopment Analysis (DEA) techniques to identify an approach that captures the energy efficiency trends in iron and steel production. We found the combination of MPI with slacks-based DEA models to be especially useful in this context. An empirical analysis of European iron and steel production showed energy efficiency improvements of 16 % up until 2007. However, the years of the global economic recession yielded drastic decreases in energy efficiency. These results stand in contrast with the results of the currently used SEC. The analysis considered the time period 1992 – 2010 and each Member State as decision-making-unit

National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-124490 (URN)
Conference
11th International Conference on Data Envelopment Analysis, 27-30 June 2013, Samsun, Turkey
Note

QC 20140331

Available from: 2013-07-05 Created: 2013-07-05 Last updated: 2016-04-19Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3618-1259

Search in DiVA

Show all publications