Change search
Link to record
Permanent link

Direct link
BETA
Saffari Pour, MohsenORCID iD iconorcid.org/0000-0002-5976-2697
Alternative names
Publications (10 of 14) Show all publications
Sadat, E. S., Faez, K. & Saffari Pour, M. (2018). Entropy-Based Video Steganalysis of Motion Vectors. Entropy
Open this publication in new window or tab >>Entropy-Based Video Steganalysis of Motion Vectors
2018 (English)In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300Article in journal (Refereed) Published
National Category
Engineering and Technology Electrical Engineering, Electronic Engineering, Information Engineering Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-231019 (URN)
Note

QC 20180620

Available from: 2018-06-20 Created: 2018-06-20 Last updated: 2018-06-20Bibliographically approved
Sadat, E. S., Faez, K. & Saffari Pour, M. (2018). Entropy-based video steganalysis of motion vectors. Entropy, 20(4), Article ID 244.
Open this publication in new window or tab >>Entropy-based video steganalysis of motion vectors
2018 (English)In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300, Vol. 20, no 4, article id 244Article in journal (Refereed) Published
Abstract [en]

In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes. 

Place, publisher, year, edition, pages
MDPI AG, 2018
Keywords
Entropy, Motion estimation, Motion vector, Steganalysis, Steganography
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-227372 (URN)10.3390/e20040244 (DOI)000435181600033 ()2-s2.0-85045835331 (Scopus ID)
Note

Export Date: 9 May 2018; Article; Correspondence Address: Faez, K.; Electrical Engineering Department, Amirkabir University of TechnologyIran; email: kfaez@aut.ac.ir. QC 20180604

Available from: 2018-06-04 Created: 2018-06-04 Last updated: 2018-07-02Bibliographically approved
Kazemi, M., Saffari Pour, M. & Sichen, D. (2017). Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas. Metallurgical and materials transactions. B, process metallurgy and materials processing science, 48(2), 1114-1122
Open this publication in new window or tab >>Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas
2017 (English)In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 48, no 2, p. 1114-1122Article in journal (Refereed) Published
Abstract [en]

Gaseous reduction by hydrogen was performed for three types of hematite pellets, two from industry and one prepared in the laboratory. The reduction mechanisms of the pellets were studied based on the morphologies of the partially reduced samples. Two mechanisms were found, the mechanisms of the two types of industrial pellets being very similar. The degree of reduction was followed as a function of time for each type of pellets. On the basis of the reaction mechanism of the industrial pellets, a mathematical model was developed. As a pioneer effort, the model combined the computational fluid dynamics approach for the flow and mass transfer in the gas phase with model of gas diffusion in the solid phase as well as the description of the chemical reaction at the reaction sites. The calculation results agreed well with the experimentally obtained reduction curves. The present work also emphasized the importance of evaluation of the reduction mechanisms and the properties of different types of iron ore pellets prior to developing a process model. While the present approach has established a good foundation for the dynamic modeling of the shaft reactor, more efforts are required to accomplish a realistic process model.

Place, publisher, year, edition, pages
SPRINGER, 2017
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-206280 (URN)10.1007/s11663-016-0895-3 (DOI)000396028600036 ()2-s2.0-85008221198 (Scopus ID)
Note

QC 20170509

Available from: 2017-05-09 Created: 2017-05-09 Last updated: 2017-05-09Bibliographically approved
Svidró, P., Diószegi, A., Saffari Pour, M. & Jönsson, P. (2017). Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings. Metals, 7, 244
Open this publication in new window or tab >>Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings
2017 (English)In: Metals, ISSN 2075-4701, Vol. 7, p. 244-Article in journal (Refereed) Published
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-225394 (URN)10.3390/met7070244 (DOI)000407365900015 ()2-s2.0-85022339105 (Scopus ID)
Note

QC 20180416

Available from: 2018-04-04 Created: 2018-04-04 Last updated: 2018-04-16Bibliographically approved
Saffari Pour, M. (2016). Producer Gas Implementation in Steel Reheating Furnaces from Lab to Industrial Scale: A Computational Fluid Dynamics and Thermodynamics Approach. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Producer Gas Implementation in Steel Reheating Furnaces from Lab to Industrial Scale: A Computational Fluid Dynamics and Thermodynamics Approach
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The integrated steel-making plants in Sweden contributed with approximately 8 % of the total CO2 emissions in the country in 2011. A major contributor to these emissions is the combustion of fossil fuels in different process units. Therefore, it is essential to reduce emissions by limiting the fossil fuels consumption in the steel industry. A possible solution to reduce the emissions is to implement alternative fuels, which are produced from various combustion and gasification sectors in the iron and steel-making industry. Currently, the blast furnace gas (BFG) and coke oven gas (COG) are extensively used for district heating purposes. Depending on the availability of biomass in a region, gasified biomass (Syngas) can also be used as an alternative fuel source. In addition, the extracted energy from these producer gases can be used in other heat treatment processes such as reheating furnaces. However, these producer gases contain several impurities such as, alkali metals, halogens, particulate matter, sulfur compounds and other mineral contaminants, which can be problematic. For instance, in the steel reheating furnaces, these impurities can form sticky layers of solutions on the steel slab surfaces which are not easy to remove.

            The High Temperature Agent Combustion (HiTAC) technology has several advantages compared to the conventional methods. These include temperature uniformity, a flexibility of fuels, low pollutant emissions and a volumetric combustion. In this study, these factors have been investigated for the pulverized coal combustion, when the coal particles are assumed to follow a Rosin-Rammler distribution. Moreover, due to the mentioned superior properties of HiTAC technique, it has also been applied for the combustion of producer gases as alternative fuel for steel reheating furnaces.

            A coupled Computational Fluid Dynamics (CFD) and thermodynamics approach has been developed to analyze the combustion of producer gases and the behavior of impurities in these gases for the steel reheating furnaces. The obtained results prove the capability of HiTAC technique to be used for the combustion of producer gases by enhancing the temperature and by reducing the size of steel reheating furnaces. The findings also show that the Low Calorific Value (LCV) of BFG and the presence of 52 % nitrogen in the gas are responsible for a lower heat release in comparison to other producer gases.

            The impurities in steel reheating furnaces are considered as ash particles having a particle size distribution similar to the pulverized coal particles. The accumulation of the ash particles at the steel slab surface is predicted using the CFD simulations. Furthermore, the thermo-chemical calculations are used to understand the effect of all the involved chemical compositions in an equilibrium thermodynamics system of impurities and iron-oxides. This thermodynamics study of impurities is divided in two steps. In the first study, at the steel slab surface, the temperature gradients and the concentration of impurities are not considered. This investigation is carried out to identify the reactivity and phase transformation of different ash mineral components with respect to the temperature zones (preheating, heating and soaking) in steel reheating furnaces. Here, chloride compounds are the most reactive compounds in comparison to other impurities. It is also found that an increased temperature from the preheating zone up to the soaking zone leads to an increased iron-oxide formation. In the heating and soaking zones, an addition of mineral compounds like SiO2 and CaO is also found to accelerate the formation of the sticky solutions at the steel slab surface. Moreover, by increasing the steel slab temperature the formations of sticky layers are highly abated in the late heating zone and the entire soaking zones.

            In the second study the concentration of particles, density of particles and temperature gradients at the steel slab surface are taken into account. Thereby, the shortcomings of the first thermodynamics system are improved. It is found that for the considered furnace configuration, the particles received the same velocity as the injected fuel (70 m/s) and they are heated up to a temperature of 1600 °C. The most of the particles, with the average size of 50 µm, are evacuated through the exhaust ports due to the inertial dominant force. Only around 10 percent of these particles have a tendency to stick to the steel slab surface at the heating zone rather than at the soaking zone. These findings could be applied for improvements in the combustion systems and furnace designs to reduce unwanted accumulations and hot-spots of sticky layers on the steel slab surface. This information may also be useful for planning of new investments in gas cleaning systems, if producer gases are used as fuels.

Abstract [sv]

2011 stod ståltillverkningen för ungefär 8 % av de totala CO2 utsläppen i Sverige, varav en bidragande orsak till utsläppen är förbränningen av fossila bränslen i olika processer. På grund av den stora mängden CO2 utsläpp så är det viktigt begränsa förbrukningen av fossila bränslen inom stålindustrin. En av de möjliga lösningarna är användning av alternativa bränslen, såsom processgaser som skapas vid förbränning och förgasning i tillverkningen av järn och stål. För tillfället så änvänds denna typ av gaser för produktion av fjärrvärme. En annan möjlighet är att använda sig av förgasad biomassa (syngas) som alternativ bränslekälla. Dessutom så kan energin från processgaserna återanvändas i andra värmebehandlingsprocesser, såsom ämnesugnar. Dessvärre så innehåller dessa gaser föroreningar såsom alkalimetaller, halogener, partiklar, svavelföreningar och andra mineralföroreningar. Förekomsten av dessa orsakar problem vid återanvändning. Till exempel så kan dessa föroreningar bilda kladdiga föreningar på stålämnets ytor i ämnesugnar och dessa är svåra att avlägsna från stålytan i ett senare skede.

            Högtemperaturförbränningsteknologi (HiTAC) har många fördelar jämfört med konventionella metoder, såsom en jämn temperaturfördelning, en stor bränsleflexibilitet, låga utsläpp av föroreningar och en volymetrisk förbränning. I denna undersökning så har dessa faktorer undersökts för kolpulverförbränning, där kolpartiklarna har antagits ha en Rosin-Rammler distribution. På grund av dessa fördelar så har HiTAC metoden också undersökts för förbränning av processgaser i ämnesugnar.

En kombination av fluiddynamikberäkningar (CFD) och termodynamiska metoder har använts för att analysera förbränningen av producerade gaser och det resulterande beteendet hos föroreningarna vid uppvärmning av stål i ämnesugnar. Resultaten visar att HiTAC kan användas för förbränning av processgaserna och därmed öka temperaturen och minska storleken på ämnesugnarna. Resultaten visade också att lågförbränningsvärdet (LCV) av masugnsgas och det 52 %-iga kväveinnehållet i gasen resulterar i ett lägre värmevärde jämfört med andra producerade gaser.

            Föroreningarna i ämnesugnar för stål anses vara askpartiklar med samma partikelfördelning som de som skapats vid förbränningen av kolpartiklarna. Med hjälp av CFD simuleringarna förutsågs ackumuleringen av askpartiklarna på stålämnets yta. Vidare så utfördes de termokemiska beräkningar för att förstå effekten av den kemiska sammansättningarna hos föroreningarna och järnoxiderna i ett termodynamiskt system i jämvikt. Den termodynamiska undersökningen är indelad i två steg. I det första steget så tas inte temperaturgradienter eller koncentrationsgradienter av föroreningar vid stålytan i beaktning. Detta görs för att identifiera reaktiviteten och fasomvandlingen hos olika askkomponenter för de olika temperaturzonerna (förvärming, värmning och utjämningszon) i ämnesugnen. Beräkningarna visade att klorföreningar är de mest reaktiva föroreningarna och att en ökad temperatur från mörkzonen förvärmningstill utjämningszonen leder till en ökad mängd järnoxider. Förekomst av SiO2 och CaO i värmning och utjämningszonen påskyndar bildandet av kladdiga föreningar på stålämnets yta. Genom att öka stålämnets temperatur så avtar bildandet av kladdiga föreningar i slutskedet av värmningszonen och för hela utjämningszonen.

            I det andra steget så tas koncentrationen och densiteten hos partiklarna och även temperaturgradienter vid stälämnets yta i beaktande. Därigenom så har bristerna från det första termodynamiska systemet förbättrats. Resultaten visade att för den aktuella ugnskonfigurationen så hade partiklarna samma hastighet som det injicerade bränslet (70 m/s) och att de uppvärmdes till en temperatur på 1600 °C. De flesta av partiklarna, med en storlek på 50 µm, lämnar ugnen genom avgasöppningarna på grund av den dominerande tröghetskraften. Det är bara omkring 10 procent av dessa partiklar som tenderar att fastna på stålämnets yta i värmningszonen snarare än i utjämningszonen. Resultaten från denna studie kan användas för att förbättra förbränningssystemet och ugnsdesignen för att reducera oönskade ansamlingar av kladdiga föreningar på stålämnets yta. Informationen kan också vara användbar för planering av nya investeringar i gasrengöringssystem, där produktionsgaser används som bränsle.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. p. 84
National Category
Energy Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-187248 (URN)978-91-7595-975-7 (ISBN)
Public defence
2016-06-09, Sal B3, Brinellvägen 23, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20160519

Available from: 2016-05-19 Created: 2016-05-18 Last updated: 2016-05-19Bibliographically approved
Saffari Pour, M., Ersson, M., Jonsson, L. T., Andersson, N., Saffaripour, M. & Jönsson, P. G. (2015). On the Implementation of Producer Gases as Alternative Fuels in Steel Reheating Furnaces. In: ASME (Ed.), Proccedings of ASME 2015 International Mechanical Engineering Congress and Exposition: . Paper presented at ASME 2015 International Mechanical Engineering Congress and Exposition,Houston, Texas, USA, November 13–19, 2015. Houston, Texas, USA, November 13–19, 2015: ASME Press, 6A
Open this publication in new window or tab >>On the Implementation of Producer Gases as Alternative Fuels in Steel Reheating Furnaces
Show others...
2015 (English)In: Proccedings of ASME 2015 International Mechanical Engineering Congress and Exposition / [ed] ASME, Houston, Texas, USA, November 13–19, 2015: ASME Press, 2015, Vol. 6AConference paper, Published paper (Refereed)
Abstract [en]

During the past decades, combustion of producer gases from other facilities has been introduced as one of the promising techniques in steel furnaces. The impurities inside producer gases are responsible for a low quality steel production due to formation of the molten ash that forms sticky layers of solutions on steel surfaces. Therefore, a comprehensive investigation is needed before a full implementation of producer gases inside the industrial furnaces. In this paper, the effects of impurities inside the gasified biomass flue gases are thermodynamically investigated regarding temperature zones inside a reheating furnace. After that, the high temperature agent combustion (HiTAC) is investigated as a solution for a steel batch reheating furnace to reduce the side effects of using the producer gases. Finally, computational fluid dynamics (CFD) is used as a numerical technique to compare four different producer gases in the studied furnace. The temperature distribution is validated with existing literature data. It shows a good agreement with a 5% error in the heating and a 10% error in the soaking zones of the reheating furnace. The comparison of simulation results assists in the understanding of the chemical and thermal behavior of different gases and provides useful data for the furnace fuel optimization.

Place, publisher, year, edition, pages
Houston, Texas, USA, November 13–19, 2015: ASME Press, 2015
Keywords
Gases, Steel, Fuels, Furnaces
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-187243 (URN)10.1115/IMECE2015-51692 (DOI)2-s2.0-84982915900 (Scopus ID)978-0-7918-5743-4 (ISBN)
Conference
ASME 2015 International Mechanical Engineering Congress and Exposition,Houston, Texas, USA, November 13–19, 2015
Note

QC 20160520

Available from: 2016-05-18 Created: 2016-05-18 Last updated: 2016-11-11Bibliographically approved
Liu, H., Saffari Pour, M., Mellin, P., Grip, C.-E. -., Yang, W. & Blasiak, W. (2014). A thermodynamic study of hot syngas impurities in steel reheating furnaces: Corrosion and interaction with oxide scales. Energy, 77, 352-361
Open this publication in new window or tab >>A thermodynamic study of hot syngas impurities in steel reheating furnaces: Corrosion and interaction with oxide scales
Show others...
2014 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 77, p. 352-361Article in journal (Refereed) Published
Abstract [en]

Environmental concerns lead industries to implement gasified biomass (syngas) as a promising fuel in steel reheating furnaces. The impurities of syngas as well as a combination with iron oxide scale form complex mixtures with low melting points, and might cause corrosion on steel slabs. In this paper, the effects of syngas impurities are thermodynamically investigated, when scale formation on the steel slabs surface simultaneously takes place. A steel reheating furnace can be divided into preheating, heating, and soaking zones where the temperature of a steel slab changes respectively. Therefore, the thermodynamic calculation is performed at different temperatures to predict the fate of impurities. Then, the stable species are connected with respective zones in a reheating furnace. It is concluded that reactions due to alkali compounds, chloride, and particulate matter could take place on steel slabs. In the low temperature range, interaction of sodium chloride occured with pure iron prior to scale formation. Then, at high temperature the reactions of impurities are notable with iron oxides due to scale growing. Furthermore, the multicomponent reactions with syngas impurities showed that most of alkali contents evaporate at first stages, and only small amounts of them remain in slag at high temperature.

Keywords
Reheating furnace, Thermodynamic calculation, Syngas, Impurities, Alkali compounds
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-160083 (URN)10.1016/j.energy.2014.08.092 (DOI)000346542500040 ()2-s2.0-84909646337 (Scopus ID)
Funder
Swedish Energy Agency, 35386-1
Note

QC 20150225

Available from: 2015-02-25 Created: 2015-02-13 Last updated: 2017-12-04Bibliographically approved
Ghadamgahi, M., Ölund, P., Lugnet, A., Saffaripour, M. & Yang, W. (2014). Design optimization of flameless-oxyfuel soaking pit furnace using CFD technique. In: Energy Procedia: . Paper presented at 6th International Conference on Applied Energy, ICAE 2014; National Taiwan University of Science and TechnologyTaipei; Taiwan (pp. 611-614). , 61
Open this publication in new window or tab >>Design optimization of flameless-oxyfuel soaking pit furnace using CFD technique
Show others...
2014 (English)In: Energy Procedia, 2014, Vol. 61, p. 611-614Conference paper, Published paper (Refereed)
Abstract [en]

The effect of the combustion chamber’s configuration on the characteristics of flow and combustion parameters has been numerically investigated for a multi injecting, LPG, Flameless Oxy-fuel burner in a real-size soaking pit furnace, using CFD simulation. The simulation has been performed on two different furnace configurations, namely; small and large chambers of 15 m3 and 27 m3, with a height to width ratios of 1.49 and 2.02 respectively and with corresponding burner capacities of 560 kW and 900 kW. A major experimental trial has been performed in order to validate the results and reasonable consistency has been observed. The predicted results, with particular focus on the temperature distribution and heat transfer rate of two cases have been studied in detail.

National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-168113 (URN)10.1016/j.egypro.2014.11.1182 (DOI)2-s2.0-84922341756 (Scopus ID)
Conference
6th International Conference on Applied Energy, ICAE 2014; National Taiwan University of Science and TechnologyTaipei; Taiwan
Note

QC 20150604

Available from: 2015-06-04 Created: 2015-05-27 Last updated: 2016-03-08Bibliographically approved
Saffari Pour, M., Mellin, P., Yang, W. & Blasiak, W. (2014). Numerical Investigation of Syngas Combustion in a HiTAG System Using CFD Techniques. In: Stein Tore Johansen & Jan Erik Olsen (Ed.), PROCEEDINGS of the 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries: . Paper presented at 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries,SINTEF, Trondheim, Norway,17-19 June 2014. Trondheim
Open this publication in new window or tab >>Numerical Investigation of Syngas Combustion in a HiTAG System Using CFD Techniques
2014 (English)In: PROCEEDINGS of the 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries / [ed] Stein Tore Johansen & Jan Erik Olsen, Trondheim, 2014Conference paper, Published paper (Refereed)
Abstract [en]

Utilization of gasified biomass in the case of combustion could introduce a prominent way to high energy efficiency, pollutant emissions reduction, and heat recovery purposes. In this paper, secondary syngas combustion chamber of high temperature agent gasification (HiTAG) system is modelled with computational fluid dynamics (CFD) techniques. The numerical data in terms of temperature distribution and flue gas concentrations are compared with experimental measurements through the whole volume of such chamber. In order to reduce the pollutant emissions, and more efficient volumetric combustion, a low NOX burner is used in the secondary chamber. The validation of numerical results with experimental measurements shows a good consistency through the entire chamber. It is concluded that the NOX emission due to secondary air injection, and low NOX burner decreased significantly prior to spread in atmosphere. Moreover, the concentration of oxygen and carbon monoxide at the combustion exhaust reveals a reliable combustion system.

Place, publisher, year, edition, pages
Trondheim: , 2014
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-187745 (URN)978-82-14-05741-6 (ISBN)
Conference
10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries,SINTEF, Trondheim, Norway,17-19 June 2014
Note

QC 20160530

Available from: 2016-05-28 Created: 2016-05-28 Last updated: 2016-05-30Bibliographically approved
Saffari Pour, M. & Yang, W. (2014). Performance of pulverized coal combustion under high temperature air diluted by steam. ISRN Mechanical Engineering, 2014
Open this publication in new window or tab >>Performance of pulverized coal combustion under high temperature air diluted by steam
2014 (English)In: ISRN Mechanical Engineering, ISSN 2090-5122, E-ISSN 2090-5130, Vol. 2014Article in journal (Refereed) Published
Abstract [en]

The high temperature air combustion (HiTAC) is an advanced promising technology for heat recovery, energy saving, and stability improvement of flame. Computational fluid dynamic (CFD) is known as an applied tool to execute HiTAC modeling. In this paper, performances of pulverized coal combustion under the high preheated and oxygen deficient air are studied by both experimental and numerical methodology. The experimental facilities have been accomplished in a HiTAC chamber with coal injection velocity that ranges from 10 to 40 m/s. In order to achieve different preheated temperatures, the combustion air in such system is diluted by variable steam percentages from 0 to 44%. Results of mathematical simulation and experimental tests present convincible agreement through whole region. It is concluded that NOX emission is reduced by increasing the steam percentage in the oxidizer due to decreasing the flame temperature. Besides, graphical contours show that by adding more steam to oxidizer composition, the oxygen concentration decreased. Additionally, results show that when the injection speed of fuel is increased, NOX emission is also increased, and when the injection rate of preheated air is increased, NOX emission shows decreasing trend. Further contribution in future is needed to investigate the performance of such technologies.

National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-161019 (URN)10.1155/2014/217574 (DOI)2-s2.0-84899575200 (Scopus ID)
Note

QC 20150313

Available from: 2015-03-13 Created: 2015-03-06 Last updated: 2017-12-04Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-5976-2697

Search in DiVA

Show all publications