kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 11) Show all publications
Faure, X., Lebrun, R. & Pasichnyi, O. (2024). Impact of time resolution on estimation of energy savings using a copula-based calibration in UBEM. Energy and Buildings, 311, Article ID 114134.
Open this publication in new window or tab >>Impact of time resolution on estimation of energy savings using a copula-based calibration in UBEM
2024 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 311, article id 114134Article in journal (Refereed) Published
Abstract [en]

Urban Building Energy modelling (UBEM) has emerged in the last decade as an important tool to accelerate energy transition in the building sector. To fulfil one of its major purposes - forecasting energy savings for potential energy conservation measures at an urban scale, several challenges are still to be addressed. Two key challenges include: 1) the need to calibrate models with a large number of unknown parameters across numerous buildings (either individually or through archetype representation); 2) the limited availability of high-resolution measured data, which raises concerns about calibrated models based solely on yearly values for accurate energy savings forecast. This study addresses these challenges using a case study of 35 buildings in a district in Stockholm, Sweden. Firstly, a new iterative Approximate Bayesian Computation (ABC) method for calibration is proposed, incorporating a copula-based sampling process at each iteration. Secondly, the new calibration process is applied with three different time resolutions to examine the impact of data resolution on forecasted energy usage, particularly when applied to a classical energy conservation measure. Results demonstrate the efficiency of the new method across the 35 buildings, facilitating the rapid population of a final joint distribution for the nine unknown parameters considered in each building. While the marginals may be strongly influenced by the time resolution, the forecasted energy consumption remains identical across the three analysed time resolutions. However, a noticeable difference is observed when the ECM pertains to a formerly unknown or known parameter.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
ABC, Calibration, Copula, Probabilistic, Time resolution, UBEM, Uncertainty
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-345709 (URN)10.1016/j.enbuild.2024.114134 (DOI)001217562100002 ()2-s2.0-85189705175 (Scopus ID)
Note

QC 20240527

Available from: 2024-04-18 Created: 2024-04-18 Last updated: 2024-05-27Bibliographically approved
Faure, X., Johansson, T. & Pasichnyi, O. (2022). The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale. Energies, 15(4), 1525, Article ID 1525.
Open this publication in new window or tab >>The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale
2022 (English)In: Energies, E-ISSN 1996-1073, Vol. 15, no 4, p. 1525-, article id 1525Article in journal (Refereed) Published
Abstract [en]

New modelling tools are required to accelerate the decarbonisation of the building sector. Urban building energy modelling (UBEM) has recently emerged as an attractive paradigm for analysing building energy performance at district and urban scales. The balance between the fidelity and accuracy of created UBEMs is known to be the cornerstone of the model's applicability. This study aimed to analyse the impact of traditionally implicit modeller choices that can greatly affect the overall UBEM performance, namely, (1) the level of detail (LoD) of the buildings' geometry; (2) thermal zoning; and (3) the surrounding shadowing environment. The analysis was conducted for two urban areas in Stockholm (Sweden) using MUBES-the newly developed UBEM. It is a bottom-up physics-based open-source tool based on Python and EnergyPlus, allowing for calibration and co-simulation. At the building scale, significant impact was detected for all three factors. At the district scale, smaller effects (<2%) were observed for the level of detail and thermal zoning. However, up to 10% difference may be due to the surrounding shadowing environment, so it is recommended that this is considered when using UBEMs even for district scale analyses. Hence, assumptions embedded in UBEMs and the scale of analysis make a difference.

Place, publisher, year, edition, pages
MDPI AG, 2022
Keywords
urban building energy model, UBEM, level of detail, LOD, shadowing, thermal zoning
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-315893 (URN)10.3390/en15041525 (DOI)000824085600002 ()2-s2.0-85125073578 (Scopus ID)
Note

QC 20220728

Available from: 2022-07-28 Created: 2022-07-28 Last updated: 2023-08-28Bibliographically approved
Pasichnyi, O. (2020). Advancing urban analytics for energy transitions: Data-driven strategic planning for citywide building retrofitting. (Doctoral dissertation). Stockholm, Sweden: KTH Royal Institute of Technology
Open this publication in new window or tab >>Advancing urban analytics for energy transitions: Data-driven strategic planning for citywide building retrofitting
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Vidareutveckling av stadsanalys för energiomställning : Datadriven strategisk planering för stadsövergripande renovering av byggnadsbestånd
Abstract [en]

Decarbonisation of the building stock is essential for energy transitions towards climate-neutral cities in Sweden, Europe and globally. Meeting 1.5°C scenarios is only possible through collaborative efforts by all relevant stakeholders — building owners, housing associations, energy installation companies, city authorities, energy utilities and, ultimately, citizens. These stakeholders are driven by different interests and goals. Many win-win solutions are not implemented due to lack of information, transparency and trust about current building energy performance and available interventions, ranging from city-wide policies to single building energy service contracts. The emergence of big data in the building and energy sectors allows this challenge to be addressed through new types of analytical services based on enriched data, urban energy models, machine learning algorithms and interactive visualisations as important enablers for decision-makers on different levels.

The overall aim of this thesis was to advance urban analytics in the building energy domain. Specific objectives were to: (1) develop and demonstrate an urban building energy modelling framework for strategic planning of large-scale building energy retrofitting; (2) investigate the interconnection between quality and applications of urban building energy data; and (3) explore how urban analytics can be integrated into decision-making for energy transitions in cities. Objectives 1 and 2 were pursued within a single case study based on continuous collaboration with local stakeholders in the city of Stockholm, Sweden. Objective 3 was addressed within a multiple case study on participatory modelling for strategic energy planning in two cities, Niš, Serbia, and Stockholm. A transdisciplinary research strategy was applied throughout.

A new urban building energy modelling framework was developed and demonstrated for the case of Stockholm. This framework utilises high-resolution building energy data to identify buildings and retrofitting measures with the highest potential, assess the change in total energy demand from large-scale retrofitting and explore its impact on the supply side. Growing use of energy performance certificate (EPC) data and increasing requirements on data quality were identified in a systematic mapping of EPC applications combined with assessment of EPC data quality for Stockholm. Continuity of data collaborations and interactivity of new analytical tools were identified as important factors for better integration of urban analytics into decision-making on energy transitions in cities.

Abstract [sv]

Energiomställningen till ett fossilfritt byggnadsbestånd är avgörande för att uppnå klimatneutrala städer i Sverige, Europa och övriga världen. Alla scenarier som begränsar uppvärmningen till 1,5 °C är beroende av samarbete mellan alla relevanta aktörer — fastighetsägare, bostadsrättsföreningar, byggföretag, energiföretag och i slutändan även medborgarna. Dessa intressenter drivs av olika intressen och mål. Många vinna-vinna-lösningar implementeras inte på grund av brist på information, transparens och tillit gällande byggnaders energiprestanda. Detta leder till att tillgängliga åtgärder, från enskilda byggnader till policyer för hela städer, inte genomförs. Framväxten av big data inom fastighet- och energisektorn öppnar nya möjligheter att hantera denna utmaning. En nyckel i detta är analytiska tjänster baserade på strukturerad data, urbana energimodeller, maskininlärning och interaktiv visualisering som möjliggörare för beslutsfattande på olika nivåer.

Det övergripande syftet med denna avhandling var att vidareutveckla urban energianalys (eng. urban analytics) inom byggnadsbeståndet. Specifika mål var att: (1) utveckla och demonstrera ett ramverk inriktat mot urbana energimodeller för strategisk planering av storskalig energieffektivisering av byggnader; (2) utreda relationen mellan datakvalitet och tillämpningar av urban energidata för byggnader; och (3) utforska hur urban analys kan integreras i beslutsfattande för energiomställning av städer. Mål 1 och 2 uppnåddes genom en enskild fallstudie baserad på kontinuerligt samarbete med lokala intressenter i Stockholms kommun. Mål 3 behandlades inom en multipel fallstudie som var inriktad på deltagande modellering (eng. participatory modelling) för strategisk energiplanering i två städer, Niš i Serbien och Stockholm. En tvärvetenskaplig forskningsstrategi tillämpades inom hela forskningsstudien.

Ett nytt ramverk inom modellering av urban energi utvecklades och demonstrerades för fallstudien i Stockholm. Detta ramverk använde högupplöst byggnadsenergidata för att identifiera de byggnader och renoveringsåtgärder som har störst potential, undersöka förändringen av det totala energibehovet utifrån storskalig renovering och utreda dess inverkan på energisystemet och tillförseln. Ökad användning av data från energideklarationer (eng. EPC, energy performance certificate) och högre krav på datakvalitet identifierades i en systematisk kartläggning av EPC-tillämpningar, där även en kvalitetsgranskning av energideklarationer i Stockholm kommun genomfördes. Långsiktig datasamverkan och ökad interaktivitet i de nya analytiska verktygen identifierades som viktiga faktorer för bättre integration av urbana energimodeller i beslutsfattande gällande energiomställningar i städer.

Abstract [uk]

Декарбонізація будівель є необхідною умовою енергетичного переходу до кліматично нейтральних міст у Швеції, Європі та у всьому світі. Забезпечення 1.5 °C сценаріїв зміни клімату є можливим лише в разі спільних зусиль усіх зацікавлених сторін — власників будівель, енергетичних компаній, міської влади, енергетичних підприємств та, врешті-решт, громадян. Вищеназвані зацікавлені сторони у своїй діяльності керуються різними інтересами та цілями. Велика кількість потенційно безпрограшних рішень не впроваджується через відсутність необхідної інформації, нестачу прозорості та довіри до інформації про поточну енергоефективність будівель та можливі дії щодо її покращення. До таких заходів можуть відноситися як законодавчі ініціативи на рівні міст, так й енергосервісні контракти для окремих будівель. Нещодавна поява великих даних у житловому та енергетичному секторах дає можливість вирішувати ці проблеми за допомогою аналітики нового рівня. Ця аналітика має бути заснована на розширених даних (англ. enriched data), моделях енергетичних систем міст, алгоритмах машинного навчання та інтерактивних візуалізаціях, що дають змогу істотно підвищити ефективність прийняття рішень на різних рівнях.

Метою цього дослідження було вдосконалення міської аналітики для енергетики будівель (англ. urban analytics for building energy). Це передбачало вирішення наступних задач: (1) розробити та продемонструвати методологію для моделювання енергосистеми міських будівель з метою стратегічного планування масштабного покращення енергоефективності будівель; (2) дослідити взаємозв’язок між якістю та ефективністю використання даних про стан енергетики міських будівель; та (3) дослідити можливості інтеграції аналітики міст в процес прийняття рішень задля енергетичного переходу в містах. Задачі 1 та 2 було реалізовано в рамках окремого кейсу, на основі  постійної співпраці з зацікавленими сторонами в місті Стокгольм (Швеція). Задачу 3 було розглянуто на базі двох кейсів моделювання з участю зацікавлених сторін (англ. participatory modelling) з метою стратегічного енергетичного планування в двох містах — Ніші (Сербія) та Стокгольмі. В обох кейсах застосовувалася стратегія трансдисциплінарного дослідження.

В результаті дослідження було розроблено нову методологію для моделювання енергосистеми міських будівель, використання якої було продемонстровано на прикладі Стокгольма. Ця методологія використовує дані енергоспоживання будівель високої роздільної здатності для (а) виявлення будівель та заходів щодо покращення їхньої енергоефективності з найбільшим потенціалом; (б) оцінювання зміни загального енергоспоживання внаслідок масштабної модернізації будівель та (в) аналізу впливу цих змін на енергопостачання. Було здійснено картування випадків використання даних сертифікатів енергетичної ефективності будівель (англ. energy performance certificates, EPC) та оцінювання якості цих даних для м. Стокгольм. Це дало змогу виявити збільшення обсягів використання даних EPC та зростання вимог до їх якості. Аналіз двох кейсів стратегічного планування в містах продемонстрував, що тривала співпраця щодо збору та використання даних та інтерактивність нових інструментів з аналізу є важливими факторами покращення інтеграції міської аналітики в процеси прийняття рішень задля енергетичних переходів у містах.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2020. p. 82
Series
TRITA-ABE-DLT ; 2042
Keywords
Urban analytics, building energy data, building retrofitting, urban building energy modelling, data quality, data applications, strategic planning, decision-making, energy transitions, climate-neutral cities., Міська аналітика, дані щодо стану енергоефективності будівель, енергоефективна модернізація будівель, моделювання енергосистеми міських будівель, якість даних, застосування даних, стратегічне планування, прийняття рішень, енергетичні переходи, кліматично-нейтральні міста., Stadsanalys, byggnadsenergidata, renovering av byggnader, urbana energimodeller, datakvalitet, datatillämpningar, strategisk planering, beslutsfattande, energiomställning, hållbara städer, klimatneutrala städer.
National Category
Energy Systems Environmental Management
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-285928 (URN)10.30746/TRITA-ABE-DLT-2042 (DOI)978-91-7873-725-3 (ISBN)
Public defence
2020-12-08, Videolänk (Zoom) https://kth-se.zoom.us/j/67412816834, Du som saknar dator/datorvana kan kontakta Kosta Wallin kostaz@kth.se, If you lack a computer or computer skills, please contact kostaz@kth.se, Stockholm, 13:15 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 40846-1Swedish Energy Agency, 40846-2Swedish Energy Agency, 46896-1
Note

QC 20201116

Available from: 2020-11-16 Created: 2020-11-13 Last updated: 2025-02-10Bibliographically approved
Pasichnyi, O., Wallin, J. & Kordas, O. (2019). Data-driven building archetypes for urban building energy modelling. Paper presented at 10th Biennial International Workshop on Advances in Energy Studies IWAES), SEP 25-28, 2017, Naples, ITALY. Energy, 181, 360-377
Open this publication in new window or tab >>Data-driven building archetypes for urban building energy modelling
2019 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 181, p. 360-377Article in journal (Refereed) Published
Abstract [en]

This paper presents an approach for using rich datasets to develop different building archetypes depending on the urban energy challenges addressed. Two cases (building retrofitting and electric heating) were analysed using the same city, Stockholm (Sweden), and the same input data, energy performance certificates and heat energy use metering data. The distinctive character of these problems resulted in different modelling workflows and archetypes being developed. The building retrofitting case followed a hybrid approach, integrating statistical and physical perspectives, estimating energy savings for 5532 buildings from seven retrofitting packages. The electric heating case provided an explicitly statistical data-driven view of the problem, estimating potential for improvement of power capacity of the local electric grid at peak electric power of 147 MW. The conclusion was that the growing availability of linked building energy data requires a shift in the urban building energy modelling (UBEM) paradigm from single-logic models to on-request multiple-purpose data intelligence services.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Building archetype, Urban building energy modelling, Building retrofitting, Electric heating, Stockholm
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-255724 (URN)10.1016/j.energy.2019.04.197 (DOI)000476965900030 ()2-s2.0-85067083111 (Scopus ID)
Conference
10th Biennial International Workshop on Advances in Energy Studies IWAES), SEP 25-28, 2017, Naples, ITALY
Note

QC 20190813

Available from: 2019-08-13 Created: 2019-08-13 Last updated: 2023-12-07Bibliographically approved
Pasichnyi, O., Levihn, F., Shahrokni, H., Wallin, J. & Kordas, O. (2019). Data-driven strategic planning of building energy retrofitting: The case of Stockholm. Journal of Cleaner Production, 233, 546-560
Open this publication in new window or tab >>Data-driven strategic planning of building energy retrofitting: The case of Stockholm
Show others...
2019 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 233, p. 546-560Article in journal (Refereed) Published
Abstract [en]

Limiting global warming to 1.5 degrees C requires a substantial decrease in the average carbon intensity of buildings, which implies a need for decision-support systems to enable large-scale energy efficiency improvements in existing building stock. This paper presents a novel data-driven approach to strategic planning of building energy retrofitting. The approach is based on the urban building energy model (UBEM), using data about actual building heat energy consumption, energy performance certificates and reference databases. Aggregated projections of the energy performance of each building are used for holistic city-level analysis of retrofitting strategies considering multiple objectives, such as energy saving, emissions reduction and required social investment. The approach is illustrated by the case of Stockholm, where three retrofitting packages (heat recovery ventilation; energy-efficient windows; and a combination of these) were considered for multi-family residential buildings constructed 1946-1975. This identified potential for decreasing heat demand by 334 GWh (18%) and consequent emissions reduction by 19.6 kt-CO2 per year. The proposed method allows the change in total energy demand from large-scale retrofitting to be assessed and explores its impact on the supply side. It thus enables more precisely targeted and better coordinated energy efficiency programmes. The case of Stockholm demonstrates the potential of rich urban energy datasets and data science techniques for better decision making and strategic planning.

Place, publisher, year, edition, pages
Elsevier BV, 2019
Keywords
Urban energy planning, Building energy retrofitting, Urban building energy modelling, High-resolution metered data, Urban energy efficiency, Stockholm
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-257536 (URN)10.1016/j.jclepro.2019.05.373 (DOI)000479025500044 ()2-s2.0-85067823472 (Scopus ID)
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2023-12-07Bibliographically approved
Pasichnyi, O., Wallin, J., Levihn, F., Shahrokni, H. & Kordas, O. (2019). Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?. Energy Policy, 486-499
Open this publication in new window or tab >>Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?
Show others...
2019 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, p. 486-499Article in journal (Refereed) Published
Abstract [en]

Energy performance certificates (EPC) were introduced in European Union to support reaching energy efficiency targets by informing actors in the building sector about energy efficiency in buildings. While EPC have become a core source of information about building energy, the domains of its applications have not been studied systematically. This partly explains the limitation of conventional EPC data quality studies that fail to expose the essential problems and secure effective use of the data. This study reviews existing applications of EPC data and proposes a new method for assessing the quality of EPCs using data analytics. Thirteen application domains were identified from systematic mapping of 79 papers, revealing increases in the number and complexity of studies and advances in applied data analysis techniques. The proposed data quality assurance method based on six validation levels was tested using four samples of EPC dataset for the case of Sweden. The analysis showed that EPC data can be improved through adding or revising the EPC features and assuring interoperability of EPC datasets. In conclusion, EPC data have wider applications than initially intended by the EPC policy instrument, placing stronger requirements on the quality and content of the data.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Building energy efficiency, Data applications, Data quality, Energy performance certificate (EPC), Sweden
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-246466 (URN)10.1016/j.enpol.2018.11.051 (DOI)000463688200047 ()2-s2.0-85059551772 (Scopus ID)
Note

QC 20190328

Available from: 2019-03-28 Created: 2019-03-28 Last updated: 2023-12-07Bibliographically approved
Pereverza, K., Pasichnyi, O. & Kordas, O. (2019). Modular participatory backcasting: A unifying framework for strategic planning in the heating sector. Energy Policy, 124, 123-134
Open this publication in new window or tab >>Modular participatory backcasting: A unifying framework for strategic planning in the heating sector
2019 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 124, p. 123-134Article in journal (Refereed) Published
Abstract [en]

This study proposes a novel framework, modular participatory backcasting (mPB), for long-term planning in the heating sector. The mPB framework is based on participatory backcasting (PB) and integrates principles of modularity, participatory modelling, and transdisciplinarity. We discerned for mPB 13 modules that can be arranged according to the purpose and specifics of each planning process. The design of the mPB framework and its implementation are presented for the cases of participatory strategic planning processes to achieve sustainable heat provision by 2050 in a Ukrainian city (Bila Tserkva) and a Serbian city (Nis). The results show that mPB allows adaptability to local contexts and limitations through exclusion, augmentation, substitution, splitting and inverting properties of modularity; decreases the learning time for applying the framework in a novel context; increases the reproducibility and transparency of long-term energy planning processes; enables efficient integration of quantitative methods into the participatory process; and advances collaboration between academia and society. The proposed framework is beneficial for advancement of local planning and policy-making practices by creating strategies with a wider support of stakeholders. It could also be useful for further research through cross-case analysis.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Long-term planning, Heating sector, Participatory backcasting, Modularity, Participatory modelling, Transdisciplinarity
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-240696 (URN)10.1016/j.enpol.2018.09.027 (DOI)000453642600012 ()2-s2.0-85054469029 (Scopus ID)
Funder
EU, FP7, Seventh Framework Programme, 266587
Note

QC 20190109

Available from: 2019-01-09 Created: 2019-01-09 Last updated: 2022-06-26Bibliographically approved
Pereverza, K., Pasichnyi, O., Lazarevic, D. & Kordas, O. (2017). Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection. Applied Energy, 186(Part 2), 1115-1125
Open this publication in new window or tab >>Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection
2017 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 186, no Part 2, p. 1115-1125Article in journal (Refereed) Published
Abstract [en]

The transition to more sustainable heating systems requires socio-technical approaches to strategic planning. Scenario development plays a key role in strategic planning, as the process supports the development of future visions and actions required for their realisation. However, new approaches to scenario development are required to address the limitations of conventional scenario development methods, such as the cognitive barriers of ‘groupthink’, reluctance to consider ‘outside-the-box’ options, handling of complexity, and ad hoc scenario selection and general non-transparency of scenario development processes. This paper describes the development and implementation of a novel method for scenario development and selection in the context of participatory strategic planning for sustainable heating in cities. The method is based on the morphological approach and a number of scenario criteria including transparency,reliabilitycoveragecompletenessrelevance/densitycreativityinterpretabilityconsistencydifferentiation and plausibility. It integrates creativity workshops and interdisciplinary stakeholder participation to enhance the ownership and legitimacy of the scenarios. The approach entails the generation of a complete space of scenarios for heating systems and reduction of this space using cross-consistency analysis and project-specific requirements. Iterative development and implementation of the method is illustrated using two participatory backcasting projects focused on strategic planning for providing a comfortable indoor climate for Bila Tserkva, Ukraine, and Niš, Serbia by the year 2030. The results demonstrate that the method helps overcome the limitations of conventional approaches to scenario development and supports rigorous and transparent selection of a scenario set for participatory analysis. The method fostered the elicitation of consensus-based scenarios for more sustainable heating systems in both cities with regard to the quality of indoor comfort, environmental impact, resource efficiency and energy security.

Place, publisher, year, edition, pages
Elsevier, 2017
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-191480 (URN)10.1016/j.apenergy.2016.07.008 (DOI)000390075400004 ()2-s2.0-84996939042 (Scopus ID)
Note

QC 20160914

Available from: 2016-08-31 Created: 2016-08-31 Last updated: 2022-06-22Bibliographically approved
Zivkovic, M., Pereverza, K., Pasichnyi, O., Madzarevic, A., Ivezic, D. & Kordas, O. (2016). Exploring scenarios for more sustainable heating: The case of Nis, Serbia. Paper presented at 10th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES), 2015, Dubrovnik, Croatia. Energy, 115, 1758-1770
Open this publication in new window or tab >>Exploring scenarios for more sustainable heating: The case of Nis, Serbia
Show others...
2016 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 115, p. 1758-1770Article in journal (Refereed) Published
Abstract [en]

Sustainability transformation of the heating sector is recognised as being essential for reaching climate and environmental targets while improving the quality of life in cities worldwide. Participatory strategic planning enabled by scenario methods can be an important tool to guide this transformation, but methods for qualitative scenario analysis supporting stakeholder participation must be further developed and tested in the context of different cities. This paper presents results from integration of urban energy system modelling into the participatory strategic planning process implemented in the city of NE, which suffers problems typical of the heating sector in Serbia and the Western Balkans. The aim was to explore how the scenarios developed by local stakeholders could transform the NB heating system by 2030. Five scenarios developed within participatory backcasting project and a BAU scenario were analysed in terms of decarbonisation, energy security and energy efficiency using Long-range Energy Alternatives Planning System (LEAP). A final scenario "Efficiency for the green future" designed by the stakeholders for implementation in the city included high standards of energy efficiency in buildings, increased share of renewables in the heating energy mix, expanding the district heating system, deploying smart technologies and green architecture. The LEAP model demonstrated that this final scenario could lead to achievement of the desirable future vision developed by stakeholders for NB, through substantial improvements in energy efficiency and energy security, and to considerable emissions decreases by 2030 in comparison with the base year (2010) and the BAU scenario.

Place, publisher, year, edition, pages
Elsevier, 2016
Keywords
Urban energy modelling, LEAP, Scenario, Participatory backcasting, Heating system, Nit
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-198883 (URN)10.1016/j.energy.2016.06.034 (DOI)000389104300024 ()2-s2.0-84996599646 (Scopus ID)
Conference
10th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES), 2015, Dubrovnik, Croatia
Note

QC 20170103

Available from: 2017-01-03 Created: 2016-12-22 Last updated: 2024-03-15Bibliographically approved
Pereverza, K., Lazarevic, D., Pasichnyi, O. & Kordas, O. (2016). Insights from participatory backcasting for a sustainable heating sector in Niš, Serbia. In: : . Paper presented at 7th International Sustainability Transitions Conference, 6-9 September 2016. Wuppertal, Germany..
Open this publication in new window or tab >>Insights from participatory backcasting for a sustainable heating sector in Niš, Serbia
2016 (English)Conference paper, Published paper (Other academic)
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-196955 (URN)
Conference
7th International Sustainability Transitions Conference, 6-9 September 2016. Wuppertal, Germany.
Note

QC 20161129

Available from: 2016-11-28 Created: 2016-11-28 Last updated: 2024-03-15Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5550-1601

Search in DiVA

Show all publications