Change search
Link to record
Permanent link

Direct link
BETA
Publications (3 of 3) Show all publications
Korman, M., Välja, M., Björkman, G., Ekstedt, M., Vernotte, A. & Lagerström, R. (2017). Analyzing the effectiveness of attack countermeasures in a SCADA system. In: Proceedings - 2017 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG 2017 (part of CPS Week): . Paper presented at 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG 2017, 21 April 2017 (pp. 73-78). Association for Computing Machinery, Inc
Open this publication in new window or tab >>Analyzing the effectiveness of attack countermeasures in a SCADA system
Show others...
2017 (English)In: Proceedings - 2017 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG 2017 (part of CPS Week), Association for Computing Machinery, Inc , 2017, p. 73-78Conference paper (Refereed)
Abstract [en]

The SCADA infrastructure is a key component for power grid operations. Securing the SCADA infrastructure against cyber intrusions is thus vital for a well-functioning power grid. However, the task remains a particular challenge, not the least since not all available security mechanisms are easily deployable in these reliability-critical and complex, multi-vendor environments that host modern systems alongside legacy ones, to support a range of sensitive power grid operations. This paper examines how effective a few countermeasures are likely to be in SCADA environments, including those that are commonly considered out of bounds. The results show that granular network segmentation is a particularly effective countermeasure, followed by frequent patching of systems (which is unfortunately still difficult to date). The results also show that the enforcement of a password policy and restrictive network configuration including whitelisting of devices contributes to increased security, though best in combination with granular network segmentation.

Place, publisher, year, edition, pages
Association for Computing Machinery, Inc, 2017
Keywords
Cyber security, SCADA system, Security controls, Threat modeling, Vulnerability assessment, Electric power system security, Electric power transmission networks, Legacy systems, SCADA systems, Smart power grids, Multi-vendor environment, Network configuration, Network segmentation, Power grid operations, Vulnerability assessments, Network security
National Category
Computer Systems
Identifiers
urn:nbn:se:kth:diva-216532 (URN)10.1145/3055386.3055393 (DOI)2-s2.0-85019036296 (Scopus ID)9781450349789 (ISBN)
Conference
2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG 2017, 21 April 2017
Note

QC 20171128

Available from: 2017-11-28 Created: 2017-11-28 Last updated: 2017-11-28Bibliographically approved
Vernotte, A., Johnson, P., Ekstedt, M. & Lagerström, R. (2017). In-Depth Modeling of the UNIX Operating System for Architectural Cyber Security Analysis. In: Halle, S Dijkman, R Lapalme, J (Ed.), PROCEEDINGS OF THE 2017 IEEE 21ST INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS AND DEMONSTRATIONS (EDOCW 2017): . Paper presented at 21st IEEE International Enterprise Distributed Object Computing Conference (EDOC), OCT 10-13, 2017, Quebec City, CANADA (pp. 127-136). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>In-Depth Modeling of the UNIX Operating System for Architectural Cyber Security Analysis
2017 (English)In: PROCEEDINGS OF THE 2017 IEEE 21ST INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS AND DEMONSTRATIONS (EDOCW 2017) / [ed] Halle, S Dijkman, R Lapalme, J, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 127-136Conference paper, Published paper (Refereed)
Abstract [en]

ICT systems have become an integral part of business and life. At the same time, these systems have become extremely complex. In such systems exist numerous vulnerabilities waiting to be exploited by potential threat actors. pwnPr3d is a novel modelling approach that performs automated architectural analysis with the objective of measuring the cyber security of the modeled architecture. Its integrated modelling language allows users to model software and hardware components with great level of details. To illustrate this capability, we present in this paper the metamodel of UNIX, operating systems being the core of every software and every IT system. After describing the main UNIX constituents and how they have been modelled, we illustrate how the modelled OS integrates within pwnPr3d's rationale by modelling the spreading of a self-replicating malware inspired by WannaCry.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017
Series
IEEE International Enterprise Distributed Object Computing Conference Workshops-EDOCW, ISSN 2325-6583
National Category
Computer Systems
Identifiers
urn:nbn:se:kth:diva-220666 (URN)10.1109/EDOCW.2017.26 (DOI)000417417800020 ()2-s2.0-85043606711 (Scopus ID)978-1-5386-1568-3 (ISBN)
Conference
21st IEEE International Enterprise Distributed Object Computing Conference (EDOC), OCT 10-13, 2017, Quebec City, CANADA
Funder
EU, FP7, Seventh Framework Programme, 607109Swedish Civil Contingencies Agency
Note

QC 20180108

Available from: 2018-01-08 Created: 2018-01-08 Last updated: 2018-02-20Bibliographically approved
Vernotte, A. (2013). Research Questions for Model-Based Vulnerability Testing of Web Applications. In: 2013 IEEE SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST 2013): . Paper presented at 6th IEEE Int. Conf. on Software Testing, Verification and Validation (pp. 505-506). IEEE Computer Society
Open this publication in new window or tab >>Research Questions for Model-Based Vulnerability Testing of Web Applications
2013 (English)In: 2013 IEEE SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST 2013), IEEE Computer Society, 2013, p. 505-506Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents my Ph.D. research that focuses on developing concepts and techniques for Model-Based Vulnerability Testing (MBVT) of Web Applications. This research bridges the gap between MBT techniques, which are usually addressed to functional testing, and vulnerability testing, which is mostly done manually or with the assistance of Web Vulnerability Scanners, both techniques having several flaws. In this document, we define the core of the research and its expected contributions to MBT and vulnerability testing. Then, we expose the major key challenges of the research, and finally provide early results.

Place, publisher, year, edition, pages
IEEE Computer Society, 2013
Keywords
odel-Based Testing, Vulnerability Testing, Web Applications, DVWA example
National Category
Computer Systems
Identifiers
urn:nbn:se:kth:diva-179078 (URN)10.1109/ICST.2013.82 (DOI)000332473300066 ()2-s2.0-84883358851 (Scopus ID)
Conference
6th IEEE Int. Conf. on Software Testing, Verification and Validation
Note

QC 2016-02-05

Available from: 2015-12-10 Created: 2015-12-10 Last updated: 2016-02-05Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-2113-4900

Search in DiVA

Show all publications