kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 14) Show all publications
Henschen, J., Li, D. & Ek, M. (2019). Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydrate Polymers, 213, 208-216
Open this publication in new window or tab >>Preparation of cellulose nanomaterials via cellulose oxalates
2019 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 213, p. 208-216Article in journal (Refereed) Published
Abstract [en]

Nanocellulose prepared from cellulose oxalate has been discussed as an alternative to other methods to prepare cellulose nanofibrils or crystals. The current work describes the use of a bulk reaction between pulp and oxalic acid dihydrate to prepare cellulose oxalate followed by homogenization to produce nanocellulose. The prepared nanocellulose is on average 350 nm long and 3–4 nm wide, with particles of size and shape similar to both cellulose nanofibrils and cellulose nanocrystals. Films prepared from this nanocellulose have a maximum tensile stress of 140–200 MPa, strain at break between 3% and 5%, and oxygen permeability in the range of 0.3–0.5 cm 3 μm m −2 day −1 kPa −1 at 50% relative humidity. The presented results illustrate that cellulose oxalates may be a low-cost method to prepare nanocellulose with properties reminiscent of those of both cellulose nanofibrils and cellulose nanocrystals, which may open up new application areas for cellulose nanomaterials.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Cellulose, Cellulose nanocrystals, Cellulose nanofibrils, Cellulose oxalate, Nanocellulose, Oxalic acid dihydrate
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-246408 (URN)10.1016/j.carbpol.2019.02.056 (DOI)000461316200023 ()30879662 (PubMedID)2-s2.0-85062349488 (Scopus ID)
Note

QC 20190401

Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2022-06-26Bibliographically approved
Ottenhall, A., Henschen, J., Illergård, J. & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology
Open this publication in new window or tab >>Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions
2018 (English)In: Environmental Science: Water Research & Technology, ISSN 2053-1400, E-ISSN 2053-1419Article in journal (Refereed) Published
Abstract [en]

Filtration is a common way to obtain pure drinking water by removing particles and microorganisms based on size exclusion. Cellulose-based filters are affordable and biobased option for the removal of particles but bacteria are usually too small to be removed by size exclusion alone. In this article, the surfaces of cellulose fibres in two types of commercial paper filters have been given a positive net charge to trap bacteria through electrostatic interactions without releasing any biocides. The fibres were modified with the cationic polyelectrolyte polyvinylamine polymer in single layers (1 L) or in multilayers together with the anionic polyelectrolyte polyacrylic acid (3 L or 5 L) using a water-based process at room temperature. Filtration tests show that all filters, using both types of filter papers and a number of layers, can physically remove more than 99.9% of E. coli from water and that the 3 L modified filters can remove more than 97% of cultivatable bacteria from natural water samples. The bacterial reduction increased with increasing number of filter sheets used for the filtration and the majority of the bacteria were trapped in the top sheets of the filter. The results show the potential for creating water purification filters from bio-based everyday consumable products with a simple modification process. The filters could be used in the future for point-of-use water purification that may be able to save lives without releasing bactericides.

Keywords
Cellulose, water treatment, paper filter, membrane, filter, antibacterial, remove bacteria, layer-by-layer, Cellulosa, pappersfilter, vattenrening, membran, lager-på-lager, antibakteriell
National Category
Water Treatment
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-238838 (URN)10.1039/C8EW00514A (DOI)000451072500017 ()2-s2.0-85057384523 (Scopus ID)
Funder
ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 17-391
Note

QC 20181112

Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2023-08-25Bibliographically approved
Henschen, J., Larsson, P. A., Illergård, J., Ek, M. & Wågberg, L. (2017). Bacterial adhesion to polyvinylamine-modified nanocellulose films. Colloids and Surfaces B: Biointerfaces, 151, 224-231
Open this publication in new window or tab >>Bacterial adhesion to polyvinylamine-modified nanocellulose films
Show others...
2017 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 151, p. 224-231Article in journal (Refereed) Published
Abstract [en]

Cellulose nanofibril (CNF) materials have been widely studied in recent years and are suggested for a wide range of applications, e.g., medical and hygiene products. One property not very well studied is the interaction between bacteria and these materials and how this can be controlled. The current work studies how bacteria adhere to different CNF materials modified with polyelectrolyte multilayers. The tested materials were TEMPO-oxidized to have different surface charges, periodate-oxidized to vary the water interaction and hot-pressed to alter the surface structure. Then, multilayers were constructed using polyvinylamine (PVAm) and polyacrylic acid. Both the material surface charge and water interaction affect the amount of polymer adsorbed to the surfaces. Increasing the surface charge decreases the adsorption after the first PVAm layer, possibly due to conformational changes. Periodate-oxidized and crosslinked films have low initial polymer adsorptions; the decreased swelling prevents polymer diffusion into the CNF micropore structure. Microscopic analysis after incubating the samples with bacterial suspensions show that only the materials with the lowest surface charge enable bacteria to adhere to the surface because, when adsorbing up to 5 layers PVAm/PAA, the increased anionic surface charge appears to decrease the net surface charge. Both the amounts of PVAm and PAA influence the net surface charge and thus the bacterial adhesion. The structure generated by the hot-pressing of the films also strongly increases the number of bacteria adhering to the surfaces. These results indicate that the bacterial adhesion to CNF materials can be tailored using polyelectrolyte multilayers on different CNF substrates.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Bacterial adhesion, Cellulose nanofibrils, Polyelectrolyte multilayers, Polymer adsorption, Polyvinylamine
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-200877 (URN)10.1016/j.colsurfb.2016.12.018 (DOI)000394475400027 ()28013166 (PubMedID)2-s2.0-85006856296 (Scopus ID)
Note

QC 20170203

Available from: 2017-02-03 Created: 2017-02-03 Last updated: 2024-03-15Bibliographically approved
Larsson, P., Erlandsson, J., López Durán, V., Henschen, J., Tchang Cervin, N., Al-Ansari, Z., . . . Wågberg, L. (2017). Crosslinking as a facilitator for novel (nano)cellulose-based applications. Paper presented at 253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA. Abstracts of Papers of the American Chemical Society, 253
Open this publication in new window or tab >>Crosslinking as a facilitator for novel (nano)cellulose-based applications
Show others...
2017 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-243608 (URN)000430568503328 ()
Conference
253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA
Note

QC 20190206

Available from: 2019-02-06 Created: 2019-02-06 Last updated: 2022-06-26Bibliographically approved
Ek, M., Li, D. & Henschen, J. (2017). Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chemistry, 19, 5564-5567
Open this publication in new window or tab >>Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield
2017 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 19, p. 5564-5567Article in journal (Refereed) Published
Abstract [en]

A one-pot esterification and hydrolysis of cellulose was carried outby treating cellulose fibres with molten oxalic acid dihydrate. Eachcellulose oxalate had a free carboxyl content above 1.2 mmol g−1and an average molecular weight of approximately 40 kDa.Aqueous suspensions of the oxalates were sonicated to preparecellulose nanocrystals with a gravimetric yield of 80.6%

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017
National Category
Paper, Pulp and Fiber Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-219967 (URN)10.1039/c7gc02489d (DOI)000417758700005 ()2-s2.0-85035811625 (Scopus ID)
Note

QC 20171218

Available from: 2017-12-14 Created: 2017-12-14 Last updated: 2022-09-13Bibliographically approved
Ottenhall, A., Chen, C., Henschen, J., Illergård, J., Larsson, P. A., Wågberg, L. & Ek, M. (2017). Layer-by-layer modification of cellulosic materials for green antibacterial materials. Paper presented at 253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA. Abstracts of Papers of the American Chemical Society, 253
Open this publication in new window or tab >>Layer-by-layer modification of cellulosic materials for green antibacterial materials
Show others...
2017 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-269613 (URN)000430568503481 ()
Conference
253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA
Note

QC 20200310

Available from: 2020-03-10 Created: 2020-03-10 Last updated: 2022-06-26Bibliographically approved
Henschen, J., Illergård, J., Larsson, P., Ek, M. & Wågberg, L. (2016). Antibacterial aerogels from cellulose nanofibrils. Abstracts of Papers of the American Chemical Society, 251
Open this publication in new window or tab >>Antibacterial aerogels from cellulose nanofibrils
Show others...
2016 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-270696 (URN)000431905705825 ()
Note

QC 20200312

Available from: 2020-03-12 Created: 2020-03-12 Last updated: 2024-03-15Bibliographically approved
Henschen, J. (2016). Bacterial adhesion to polyelectrolyte modified materials based on nanocellulose. (Licentiate dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Bacterial adhesion to polyelectrolyte modified materials based on nanocellulose
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Since the introduction of materials based on cellulose nanofibrils (CNFs), these materials have been studied extensively and are suggested to be suitable for use in, for example, hygiene and health care products. A property not very well studied but that could further increase the usability of CNF products is the possibility of controlling bacterial adhesion to the materials. Controlling and fine-tuning the bacterial adhesion makes it possible to produce contact-active antibacterial materials as well as anti-adhesive materials.

The current thesis shows how the number of bacteria adhering to CNF-based materials can be altered through the adsorption of polyelectrolyte multilayers. Polyvinylamine (PVAm) and polyacrylic acid (PAA) were adsorbed in multilayers to achieve differently charged materials. The CNF substrates consisted of both crosslinked and non-crosslinked films with different surface charges and structures as well as porous aerogels.

The results show the possibility of adsorbing PVAm/PAA to recharge the surfaces and construct multilayers. The polyelectrolyte adsorption was affected both by crosslinking and by changing the surface charge of the CNF films. Increasing the surface charge resulted in a decreased PVAm adsorption after the first polymer layer. Crosslinking the films resulted in a low initial PVAm adsorption, but as more layers were adsorbed, the PVAm adsorption increased similarly to the non-crosslinked films. The PVAm adsorption to the aerogels was lower than expected, taking into account their high surface area and surface charge, possibly due to crowding effects on the surface due to geometric limitations.

Only the CNF films with the lowest surface charge and the aerogels adsorbed high numbers of bacteria from bacterial suspensions. The bacterial adsorption to the films was affected by the surface charge, the PAA adsorption and the PVAm adsorption, with a higher net surface charge leading to higher bacterial adsorption. The aerogels efficiently removed bacteria from the bacterial suspensions by adsorbing them onto their surface, with some samples removing over 99.9 % of the bacteria. The results presented in this thesis are believed to lead to a better understanding of both polyelectrolyte adsorption on CNF materials and bacterial adhesion to CNF materials and how polyelectrolyte multilayer adsorption can alter it.

Abstract [sv]

Material tillverkade av cellulosa nanofibriller (CNF) öppnar upp många nya möjligheter inom bland annat hygien och sjukvårdssektorn med material som har nya eller förbättrade egenskaper. En egenskap som inte har undersökts särskilt väl, men som är viktig inom dessa tillämpningar, är hur bakterier fäster på materalets yta och hur detta kan styras. Genom att kontrollera interaktionen mellan bakterier och material är det möjligt att designa både icke adhesiva och antibakteriella material som är kontaktaktiva.

Denna avhandling beskriver hur adsorptionen av bakterier på material av CNF kan styras genom adsorption av polyelektrolyter i multilager. Polyvinylamin (PVAm) och polyakrylsyra (PAA) adsorberades i multilager till olika laddade och strukturerade material av CNF. Materialen bestod av tvärbundna och icke tvärbundna CNF-filmer med olika ytladdningar och strukturer, samt porösa aerogeler av CNF.

Resultaten visar att det är möjligt att adsorbera PVAm/PAA för att omladda ytan och bygga multilager. Polyelektrolyt-adsorptionen påverkades av både tvär bindning och ytladdningen av filmerna. Högre ytladdning ledde till en lägre PVAm adsorption. Tvärbindning av filmerna ledde till en initialt låg PVAm adsorption, dock så ökade den i de följande lagren för att bygga multilager liknande de icke tvärbundna. PVAm-adsorptionen på aerogelerna var lägre än väntat med hänseende till den höga ytarean och ytladdningen. Detta föreslås bero på geometriska begränsningar på ytan som styr PVAm adsorptionen.

Enbart CNF filmerna med lägst ytladdning och aerogelerna, adsorberade större mängder bakterier på ytan efter att de exponerats för bakterielösningar. Bakterieadsorptionen på filmerna påverkades av ytladdning och adsorptionen av både PVAm och PAA, en högre total ytladdning ledde till fler bakterier på ytorna. Aerogelerna adsorberade effektivt stora mängder bakterier, vissa av materialen minskade mängden bakterier i lösning med över 99,9 %. Resultaten från denna avhandling leder till en ökad förståelse för hur både polyelektrolyter adsorberar på CNF material och hur bakterieadhesionen kan styras för dessa material. Förhoppningarna är att dessa material kommer bättre kunna anpassas för att användning i applikationer som är känsliga för bakterier. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. p. viii, 35
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:14
Keywords
Bacterial adhesion, cellulose nanofibrils, polymer adsorption, polyvinylamine
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-184512 (URN)978-91-7595-915-3 (ISBN)
Presentation
2016-04-29, E3, Osquars backe 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
VINNOVA
Note

QC 20160408

Available from: 2016-04-08 Created: 2016-04-01 Last updated: 2022-06-23Bibliographically approved
Henschen, J., Illergård, J., Larsson, P. A., Ek, M. & Wågberg, L. (2016). Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids and Surfaces B: Biointerfaces, 146, 415-422
Open this publication in new window or tab >>Contact-active antibacterial aerogels from cellulose nanofibrils
Show others...
2016 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 146, p. 415-422Article in journal (Refereed) Published
Abstract [en]

The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26 mg PVAm g aerogel−1 was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure.

Keywords
Antibacterial, Cellulose nanofibrils, Aerogel, Contact active, Polymer adsorption
National Category
Paper, Pulp and Fiber Technology
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-185001 (URN)10.1016/j.colsurfb.2016.06.031 (DOI)000382269600046 ()27391038 (PubMedID)2-s2.0-84977269377 (Scopus ID)
Funder
VINNOVA
Note

QC 20160825

Available from: 2016-04-07 Created: 2016-04-07 Last updated: 2024-03-18Bibliographically approved
Benselfelt, T., Henschen, J., Pettersson, T. & Wågberg, L. (2016). Polyelectrolyte multilayers on differently charged cellulose surfaces. Abstracts of Papers of the American Chemical Society, 251
Open this publication in new window or tab >>Polyelectrolyte multilayers on differently charged cellulose surfaces
2016 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2016
National Category
Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-242667 (URN)000431903802454 ()
Note

QC 20190222

Available from: 2019-02-22 Created: 2019-02-22 Last updated: 2022-06-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-6263-8403

Search in DiVA

Show all publications