kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 423) Show all publications
Jin, Y., Liu, H., Yang, H., Siriwardena Thanaweera Achchige, D. P., Subasi, Y., Gond, R., . . . Yang, W. (2025). Development of biomass pyrolysis bio-oil as a renewable surface engineering agent for bio-based hard carbon production. Journal of Power Sources, 641, Article ID 236824.
Open this publication in new window or tab >>Development of biomass pyrolysis bio-oil as a renewable surface engineering agent for bio-based hard carbon production
Show others...
2025 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 641, article id 236824Article in journal (Refereed) Published
Abstract [en]

Sodium-ion batteries (SIBs) are emerging as a promising alternative to lithium-ion batteries due to their potential for efficient and sustainable energy storage. Thus, the demand for high-performance battery materials with a sustainable supply chain, particularly hard carbon (HC) as the primary anode material for SIBs, is rapidly increasing. This study focuses on enhancing the production and electrochemical performance of HC products by leveraging Sweden's abundant forestry resources and advanced biomass refining processes. Specifically, we propose a novel HC production process that compresses sawdust-derived biocarbon with bio-oil derived from the same pyrolysis process to produce HC with improved properties, where the bio-oil serves as both a binder and a surface engineering agent for the biocarbon. This approach effectively modifies surface defects, leading to increased initial Coulombic efficiency (ICE), reaching values of 90 % in half-cell tests. Moreover, laboratory measurements and Life Cycle Assessment (LCA) results quantified that this production method achieves nearly 50 % higher HC yields and reduces greenhouse gas (GHG) emissions by approximately 20 % compared to the conventional production method. As a result, this offers a potentially more sustainable and economically viable solution for advancing the SIB anode material production.

Place, publisher, year, edition, pages
Elsevier BV, 2025
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-362046 (URN)10.1016/j.jpowsour.2025.236824 (DOI)2-s2.0-105000536182 (Scopus ID)
Note

QC 20250404

Available from: 2025-04-03 Created: 2025-04-03 Last updated: 2025-04-04Bibliographically approved
Bolívar Caballero, J. J., Zaini, I. N., Nurdiawati, A., Fedorova, I., Cao, P., Lewin, T., . . . Yang, W. (2025). Electrified catalytic steam reforming for renewable syngas production: Experimental demonstration, process development and techno-economic analysis. Applied Energy, 377, Article ID 124556.
Open this publication in new window or tab >>Electrified catalytic steam reforming for renewable syngas production: Experimental demonstration, process development and techno-economic analysis
Show others...
2025 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 377, article id 124556Article in journal (Refereed) Published
Abstract [en]

Biomass is a key renewable feedstock for producing green fuels; however, renewable feedstock presents a high risk for catalyst deactivation and poor stability. In addition, the heat source of industrial reforming processes comes from fuel combustion and most heat is lost in the flue gas. In this study, a Ni/Al2O3/FeCrAl-based monolithic catalyst with a periodic open cellular structure (POCS) was designed and 3D-printed. A reforming process was then conducted by directly heating the catalyst using electricity instead of fuel combustion. This e-reformer technology was demonstrated in continuous catalytic steam reforming of biomass pyrolysis volatiles. A high H2 yield of ≈7.1 wt % of biomass has been obtained at a steam-to-biomass (S/B) ratio of 4.5, reforming temperature of 800 °C and weight hourly space velocity (WHSV) of 310 h−1, resulting in an energy consumption of 8 kWhel kg−1 biomass (66% energy efficiency). The results show a successful demonstration of the electrified technology with improvement potential; in addition, a process was designed and assessed economically for synthetic natural gas (SNG) production of 80 MWHHV, comparing electrification and partial oxidation in different scenarios.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
3D-printed catalyst, Electrified reforming, Hydrogen, Pyrolysis, Pyrolysis volatiles, Steam reforming
National Category
Energy Engineering Chemical Engineering Energy Systems
Identifiers
urn:nbn:se:kth:diva-354281 (URN)10.1016/j.apenergy.2024.124556 (DOI)001327231800001 ()2-s2.0-85204774207 (Scopus ID)
Note

QC 20241023

Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2025-02-26Bibliographically approved
Bolívar Caballero, J. J., Talkhab, F., Yang, H., Gulshan, S., Cao, P., Lewin, T., . . . Yang, W. (2025). Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles. Chemical Engineering Journal Advances, 21, Article ID 100705.
Open this publication in new window or tab >>Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles
Show others...
2025 (English)In: Chemical Engineering Journal Advances, E-ISSN 2666-8211, Vol. 21, article id 100705Article in journal (Refereed) Published
Abstract [en]

Pyrolysis of biomass plus catalytic reforming of its pyrolysis volatiles is a green alternative to produce solid (biochar) and gaseous (syngas) fuels that have several valuable applications; however, this catalytic process suffers from fast deactivation, and its energy consumption is yet to be studied, factors that determine the process's feasibility in industrialisation. To address these issues, the direct electrification of a 3D-printed FeCrAl heater coated with 15.5 % Ni/Al2O3 was tested in a parametric study in the catalytic steam reforming of biomass pyrolysis volatiles, in order to investigate the effect of the S/B ratio and space–time on the syngas yield and composition. Complete bio-oil reforming was obtained at a biomass feed rate of ≤ 1 g min−1 and a S/B ratio of ≥ 2, and stability close to 100 % was estimated after over four hours of operation. Nonetheless, the produced syngas is rich in C1 – C3 gases and moderately low in H2 (≈ 2 wt %). The effect of the catalyst's structure on the bio-oil reforming and heat efficiency was complemented using CFD simulations and compared to a simple geometry based on commercial extruded monoliths. Finally, the biomass-derived syngas upgrading to H2 production was assessed using different process simulations and compared to existing H2-producing technologies in terms of energy efficiency and emissions.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
3D-printed catalyst, Biomass, Electrified reforming, Syngas
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-358901 (URN)10.1016/j.ceja.2025.100705 (DOI)001398202700001 ()2-s2.0-85214564957 (Scopus ID)
Note

QC 20250127

Available from: 2025-01-23 Created: 2025-01-23 Last updated: 2025-02-26Bibliographically approved
Jin, Y., Liu, S., Shi, Z., Wang, S., Wen, Y., Zaini, I. N., . . . Yang, W. (2024). A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass. Energy, 295, Article ID 131029.
Open this publication in new window or tab >>A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass
Show others...
2024 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 295, article id 131029Article in journal (Refereed) Published
Abstract [en]

This study aims to improve the quality and yield of bio-oil produced from ex-situ catalytic pyrolysis of lignocellulosic biomass (sawdust) using a combination of stage catalysts with Al-MCM-41, HZSM-5, and ZrO2. The research employed various methods, including thermogravimetric analysis (TGA), differential scanning calorimetry, bench-scale experiments, and process simulations to analyze the kinetics, thermodynamics, products, and energy flows of the catalytic upgrading process. The introduction of ZrO2 enhances the yield of monoaromatic hydrocarbons (MAHs) in heavy organics. Compared with the dual-catalyst case, the MAHs yield escalates by approximately 344% at a catalyst ratio of 1:3:0.25. Additionally, GC-MS data indicate that the incorporation of ZrO2 promotes the deoxygenation reaction of the guaiacol compound and the oligomerization reactions of PAHs. The integration of ZrO2 as the third catalyst enhances the yield of heavy organics significantly, achieving 16.85% at a catalyst ratio of 1:3:1, which increases by nearly 35.6% compared to the dual-catalyst case. Also, the addition of ZrO2 as the third catalyst enhanced the energy distribution in heavy organics. These findings suggest that the combination of these catalysts improves the fuel properties and yields of the bio-oil.

Place, publisher, year, edition, pages
Elsevier Ltd, 2024
Keywords
Bio-oil, Process simulation, Pyrolysis, Staged catalyst, TGA
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-344932 (URN)10.1016/j.energy.2024.131029 (DOI)001224241400001 ()2-s2.0-85188595056 (Scopus ID)
Note

QC 20240524

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-05-24Bibliographically approved
Compañero, R. J., Feldmann, A., Samuelsson, P. & Jönsson, P. (2024). A value of information approach to recycling. Resources, Conservation and Recycling, 209, Article ID 107758.
Open this publication in new window or tab >>A value of information approach to recycling
2024 (English)In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 209, article id 107758Article in journal (Refereed) Published
Abstract [en]

Uncertainties with respect to the chemical composition of scrap limit its suitability as an input to recycling. This study offers an alternative approach in dealing with this concern and explores the hypothetical case where this uncertainty is nonexistent. The effect of fully knowing the scrap composition is simulated using an optimization software adopted to scrap-based, stainless-steel production. Through the systematic implementation of this information-driven model in the studied cases, the results suggest that with access to perfect information, recycling incentives can be realized. Essentially, the steel scraps’ consumption increased since it was possible to select and combine scrap quantities with varying composition profiles to achieve the targeted product compositions. This also meant that elements already in the scrap were allocated in a manner that was less dependent on pure alloy additions. Being able to demonstrate the value of information on scrap composition could rationalize upgrades on current scrap management systems.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Incentives, Material efficiency, Perfect information, Steel recycling, Steel scrap
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-348312 (URN)10.1016/j.resconrec.2024.107758 (DOI)001253669700001 ()2-s2.0-85195600545 (Scopus ID)
Note

QC 20240624

Available from: 2024-06-20 Created: 2024-06-20 Last updated: 2024-07-05Bibliographically approved
Shi, Z., Jin, Y., Han, T., Yang, H., Gond, R., Subasi, Y., . . . Yang, W. (2024). Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts. Scientific Reports, 14(1), Article ID 3966.
Open this publication in new window or tab >>Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts
Show others...
2024 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 14, no 1, article id 3966Article in journal (Refereed) Published
Abstract [en]

Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution–precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g−1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Bio-graphite, Biochar, Catalytic graphitization, Lithium-ion battery, Pyrolysis
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-344002 (URN)10.1038/s41598-024-54509-8 (DOI)38368434 (PubMedID)2-s2.0-85185354006 (Scopus ID)
Note

QC 20240229

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2024-02-29Bibliographically approved
Yang, H., Nurdiawati, A., Gond, R., Chen, S., Wang, u., Tang, B., . . . Han, T. (2024). Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes. International journal of hydrogen energy, 49, 459-471
Open this publication in new window or tab >>Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes
Show others...
2024 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 49, p. 459-471Article in journal (Other academic) Published
Abstract [en]

The global Sustainable Development Goals highlight the necessity for affordable and clean energy, designated as SDG7. A sustainable and feasible biorefinery concept is proposed for the carbon-negative utilization of biomass waste for affordable H2 and battery anode material production. Specifically, an innovative tandem biocarbon + NiAlO + biocarbon catalyst strategy is constructed to realize a complete reforming of biomass pyro-vapors into H2+CO (as a mixture). The solid residues from pyrolysis are upgraded into high-quality hard carbon (HCs), demonstrating potential as sodium ion battery (SIBs) anodes. The product, HC-1600-6h, exhibited great electrochemical performance when employed as (SIBs) anodes (full cell: 263 Wh/kg with ICE of 89%). Ultimately, a comprehensive process is designed, simulated, and evaluated. The process yields 75 kg H2, 169 kg HCs, and 891 kg captured CO2 per ton of biomass achieving approx. 100% carbon and hydrogen utilization efficiencies. A life cycle assessment estimates a biomass valorization process with negative-emissions (−0.81 kg CO2/kg-biomass, reliant on Sweden wind electricity). A techno-economic assessment forecasts a notably profitable process capable of co-producing affordable H2 and hard carbon battery anodes. The payback period of the process is projected to fall within two years, assuming reference prices of 13.7 €/kg for HCs and 5 €/kg for H2. The process contributes to a novel business paradigm for sustainable and commercially viable biorefinery process, achieving carbon-negative valorization of biomass waste into affordable energy and materials.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Biomass, Pyrolysis, Catalytic reforming, Biochar, Syngas, Auger
National Category
Energy Engineering Materials Chemistry
Research subject
Energy Technology; Chemical Engineering; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-339172 (URN)10.1016/j.ijhydene.2023.09.096 (DOI)001132794800001 ()2-s2.0-85172247785 (Scopus ID)
Funder
Vinnova, 2021-03735
Note

QC 20231106

Available from: 2023-11-03 Created: 2023-11-03 Last updated: 2025-02-25Bibliographically approved
Yang, H., Zaini, I. N., Pan, R., Jin, Y., Wang, Y., Li, L., . . . Han, T. (2024). Distributed electrified heating for efficient hydrogen production. Nature Communications, 15(1), Article ID 3868.
Open this publication in new window or tab >>Distributed electrified heating for efficient hydrogen production
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 3868Article in journal (Refereed) Published
Abstract [en]

This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.

Place, publisher, year, edition, pages
Nature Research, 2024
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-346497 (URN)10.1038/s41467-024-47534-8 (DOI)001216484200045 ()38719793 (PubMedID)2-s2.0-85192354703 (Scopus ID)
Note

QC 20240517

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2025-02-26Bibliographically approved
Akbarnejad, S., Sheng, D.-y. & Jönsson, P. (2023). A Computational Fluid Dynamics Study on Physical Refining of Steel Melts by Filtration. Metals, 13(6), Article ID 1022.
Open this publication in new window or tab >>A Computational Fluid Dynamics Study on Physical Refining of Steel Melts by Filtration
2023 (English)In: Metals, ISSN 2075-4701, Vol. 13, no 6, article id 1022Article in journal (Refereed) Published
Abstract [en]

In this paper, a previous experimental investigation on physical refining of steel melts by filtration was numerically studied. To be specific, the filtration of non-metallic alumina inclusions, in the size range of 1-100 & mu;m, was stimulated from steel melt using a square-celled monolithic alumina filter. Computational fluid dynamics (CFD) studies, including simulations of both fluid flow and particle tracing using the one-way coupling method, were conducted. The CFD predicted results for particles in the size range of & LE;5 & mu;m were compared to the published experimental data. The modeled filtration setup could capture 100% of the particles larger than 50 & mu;m. The percentage of the filtered particles decreased from 98% to 0% in the particle size range from 50 & mu;m to 1 & mu;m.

Place, publisher, year, edition, pages
MDPI AG, 2023
Keywords
steel refining, steel filtration, alumina filters, ceramic filters
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-331697 (URN)10.3390/met13061022 (DOI)001015281000001 ()2-s2.0-85163878868 (Scopus ID)
Note

QC 20230714

Available from: 2023-07-14 Created: 2023-07-14 Last updated: 2024-08-28Bibliographically approved
Bolívar Caballero, J. J., Han, T., Svanberg, R., Zaini, I. N., Yang, H., Gond, R., . . . Yang, W. (2023). Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production. Energy Conversion and Management, 287, Article ID 117071.
Open this publication in new window or tab >>Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production
Show others...
2023 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 287, article id 117071Article in journal (Refereed) Published
Abstract [en]

Catalyst research on reforming processes for syngas production has mainly focused on the active metals and support materials, while the effect of the catalyst's geometry on the reforming reactions has been poorly studied. The application of 3D-printed materials with enhanced geometries has recently started to be studied in heterogeneous catalysis and is of interest to be implemented for reforming biomass and plastic waste to produce H2-rich syngas. In this study, a geometry-enhanced 3D-printed Ni/Al2O3/FeCrAl-based monolithic catalyst with a periodic open cellular structure (POCS) was designed and fabricated. The catalyst was used for batch steam reforming biomass pyrolysis volatiles for syngas production at different parameters (temperature and steam-to-carbon ratio). The results showed complete reforming of pyrolysis volatiles in all experimental cases, a high H2 yield of ≈ 7.6 wt% of biomass was obtained at the optimized steam-to-carbon ratio of 8 and a reforming temperature of 800 °C, which is a higher yield compared to other batch reforming tests reported in the literature. Moreover, CFD simulation results in COMSOL Multiphysics demonstrated that the POCS configuration improves the reforming of pyrolysis volatiles for tar/bio-oil reforming and H2 production thanks to enhanced mass and heat transfer properties compared to the regular monolithic single-channel configuration.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Additive manufacturing, Bioenergy, Hydrogen production, Process intensification, Steam reforming, Tar cracking
National Category
Energy Engineering Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-331686 (URN)10.1016/j.enconman.2023.117071 (DOI)2-s2.0-85153854885 (Scopus ID)
Note

QC 20230713

Available from: 2023-07-13 Created: 2023-07-13 Last updated: 2025-02-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9775-0382

Search in DiVA

Show all publications