kth.sePublications
Change search
Link to record
Permanent link

Direct link
Liljenström, CarolinaORCID iD iconorcid.org/0000-0002-0231-7111
Publications (10 of 22) Show all publications
Liljenström, C., Björklund, A. & Toller, S. (2022). Including maintenance in life cycle assessment of road and rail infrastructure—a literature review. The International Journal of Life Cycle Assessment, 27(2), 316-341
Open this publication in new window or tab >>Including maintenance in life cycle assessment of road and rail infrastructure—a literature review
2022 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 27, no 2, p. 316-341Article in journal (Refereed) Published
Abstract [en]

Purpose

LCA is increasingly used in infrastructure policy and planning. This study maps approaches used in comparativeLCA of road and rail infrastructure to (1) determine the length of the analysis period, (2) estimate the maintenance frequency,and (3) include the efects of climate change on infrastructure performance. A LCA may need to fulfl diferent requirementsin diferent decision-contexts. The relevance of the approaches for decision-making in policy and procurement is thereforediscussed.

Methods

Ninety-two comparative LCAs of road and rail infrastructure published in peer-reviewed journals January 2016–July 2020 were reviewed. Papers were found through a systematic process of searching electronic databases, applying inclusion criteria, and conducting backward and forward snowballing.

Results and discussion

The analysis period was commonly determined based on infrastructure service life. The maintenancefrequency was estimated based on current practice, laboratory tests, modelling, or scenarios. The efects of climate changewere considered in two papers by comparing results in a control case and in a changed climate. In policy and procurement,current practice approaches are not adapted to innovative solutions or to climate change. Modelling and laboratory tests couldimprove calculations of the maintenance phase but might have some limitations related to innovative solutions. Scenarioscould be readily applied in a policy context; however, in procurement, consistent and generic scenarios should be used.

Conclusions

Results suggest what approaches could be used to account for maintenance in infrastructure LCA dependingon the decision-context. The LCA community is suggested to research other approaches than current practice to account forlong analysis periods, climate change, and innovative solutions. Additionally, literature not covered here could be reviewedfor additional approaches and perspectives. Examples include stand-alone LCAs, method development papers, papers onthe individual approaches and decision-contexts, certifcation systems, standards, and guidelines.

Place, publisher, year, edition, pages
Springer Nature, 2022
Keywords
Life cycle assessment; Infrastructure; Road; Rail; Maintenance; Review; Procurement; Policy
National Category
Environmental Sciences
Research subject
Planning and Decision Analysis, Environmental Strategic Analysis
Identifiers
urn:nbn:se:kth:diva-312502 (URN)10.1007/s11367-021-02012-x (DOI)000746459900003 ()2-s2.0-85123575071 (Scopus ID)
Funder
Mistra - The Swedish Foundation for Strategic Environmental Research
Note

QC 20221012

Available from: 2022-05-19 Created: 2022-05-19 Last updated: 2022-10-12Bibliographically approved
Liljenström, C. & Björklund, A. (2022). Masshantering i klimatkalkyler: Förslag till förbättrade beräkningar av masshantering i tidiga planeringsskeden med Trafikverkets modell Klimatkalkyl.
Open this publication in new window or tab >>Masshantering i klimatkalkyler: Förslag till förbättrade beräkningar av masshantering i tidiga planeringsskeden med Trafikverkets modell Klimatkalkyl
2022 (Swedish)Report (Other academic)
Abstract [sv]

Masshantering (schakt och fyll av jord och berg) kan bidra mycket till ett byggprojekts miljöpåverkan. Masshanteringens miljöpåverkan måste därför beräknas på ett representativt sätt redan i tidig planering. Trafikverket använder verktyget Klimatkalkyl för att beräkna byggprojekts klimatpåverkan och energianvändning. Detta projekt föreslår hur Trafikverket skulle kunna förbättra Klimatkalkyls beräkningar av masshanterings klimatpåverkan och energianvändning i tidiga planeringsskeden. Förslaget baseras på (1) inventering av befintliga livscykelanalys (LCA)-verktyg och en sammanställning av tidigare forskningsresultat, (2) identifiering av vilka aspekter av masshantering som har störst behov av förbättrad indata och (3) identifiering av approacher som skulle kunna göra Klimatkalkyls beräkningar av masshantering mer representativa och analysering av hur Klimatkalkyl skulle behöva ändras för att kunna implementera dessa approacher.

Ett 70-tal LCA-verktyg identifierades genom en litteraturstudie. Det verkar som att verktygen Geokalkyl (från Trafikverket) och Tidligfaseverktøy for bane (från norska Bane NOR) skulle vara de mest relevanta i tidig planering. Denna rapport sammanfattar även resultat från forskningsprojektet Optimass forskning om masstransporter i Sverige. Dessa verktyg och forskningsprojekt ligger till grund för de approacher som utreds i projektet.

Följande aspekter av masshantering verkar ha ett behov av förbättrade schabloner eller en utredning av schablonernas representativitet: krossning, dumper, grävmaskin, lastbil och borrning. Dels bör Trafikverket utreda varför schablondata skiljer sig väsentligt mellan Geokalkyl och Klimatkalkyl, dels önskar entreprenörer tillägg eller förtydligande till Klimatkalkyls befintliga schabloner och dels kan Klimatkalkyls transportavstånd skilja sig väsentligt från faktiskt transportavstånd i byggprojekt. Dessutom bör Trafikverket undersöka om Klimatkalkyl borde inkludera arbetsmomentet vält i byggdelarna Jord Fall A, fyll och Jord Fall B, fyll.

Tre approacher som skulle kunna förbättra Klimatkalkyls beräkningar av masshantering identifierades och analyserades: (1) använda resultat från verktyget Geokalkyl (baserat på geografiska informationssystem) så att projektspecifika schakt- och fyllvolymer kan användas i Klimatkalkyl, (2) utnyttja samband mellan projektets svårighetsgrad och masshantering så att defaultdata kan representera byggprojekts svårighetsgrad och (3) använda region- eller masspecifika transportsträckor för att få mer projektspecifika beräkningar av transportrelaterade utsläpp och energianvändning. Alla dessa approacher skulle kunna förbättra beräkningarnas representativitet, men endast Geokalkyl kan implementeras utan vidare datainsamling.

Den approach som verkade ha störst möjlighet att öka beräkningarnas representativitet var att använda resultat från Geokalkyl. Trafikverket bör därför underlätta överförandet av resultat (m3 schakt och fyll) från Geokalkyl till Klimatkalkyl, vilket bland annat innebär att de två verktygen behöver samordnas så att de innehåller samma typåtgärder och använder samma terminologi.

Att utnyttja samband mellan projektets svårighetsgrad och masshantering bedömdes vara relevant i de byggprojekt som inte använder Geokalkyl. Dock behövs mer arbete för att verifiera samband mellan svårighetsgraden och masshanteringen och ta fram kriterier för olika svårighetsgrader.

Att använda mass- och regionspecifika transportavstånd verkar vara särskilt viktigt för jordschakt. Klimatkalkyls defaultavstånd till och från täkt (30 km) är ett representativt genomsnitt, men för vissa typer av jordschakt kan transportavståndet vara betydligt längre (upp mot 170 km). Dock behöver transportavstånd från fler regioner sammanställas innan nya schabloner kan implementeras i Klimatkalkyl. Klimatkalkyl skulle dock, även utan nya schabloner, kunna uppdateras så att användaren lättare kan lägga in representativa transportavstånd för fall B-massor.

Series
TRITA-ABE-RPT ; 224
Keywords
miljöpåverkan, livscykelanalys (LCA), Klimatkalkyl, masshantering, Trafikverket
National Category
Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-311878 (URN)
Funder
Swedish Transport Administration, TRV 2018/135725
Note

QC 20220506

Available from: 2022-05-05 Created: 2022-05-05 Last updated: 2022-06-25Bibliographically approved
Liljenström, C., Miliutenko, S., O’Born, R., Brattebø, H., Birgisdóttir, H., Toller, S., . . . Potting, J. (2020). Life cycle assessment as decision-support in choice of road corridor: case study and stakeholder perspectives. International Journal of Sustainable Transportation, 1-18
Open this publication in new window or tab >>Life cycle assessment as decision-support in choice of road corridor: case study and stakeholder perspectives
Show others...
2020 (English)In: International Journal of Sustainable Transportation, ISSN 1556-8318, E-ISSN 1556-8334, p. 1-18Article in journal (Refereed) Published
Abstract [en]

Use of life cycle assessment (LCA) in choice of road corridor could reduce environmental impacts of traffic and infrastructure. This paper explores how the LCA model LICCER, designed to compare life cycle climate impact and energy use of alternative road corridors, fulfills practitioners’ requirements concerning data availability and usefulness for decision-making. Results are based on a case study where the model was applied to a Swedish road reconstruction project and a workshop with potential users of the model. In the case study, the shorter construction alternatives had the lowest traffic related impacts and the highest infrastructure related impacts. Earthworks, soil stabilization, and pavement contributed most to infrastructure related impacts. For the stakeholders, the LICCER model was considered useful because it includes both traffic and infrastructure, includes default data that the user can replace by project specific data, identifies possible improvements, and presents results relative to a reference alternative. However, the model could be improved by including further nation specific default data, different traffic scenarios depending on the road corridor, more detailed traffic scenarios, and an uncertainty assessment of the model output. These findings may be useful in the development and improvement of LCA models and when evaluating the suitability of existing models for use in early planning.

Place, publisher, year, edition, pages
Taylor & Francis, 2020
Keywords
greenhouse gas emissions, infrastructure planning, life cycle assessment, primary energy use, road corridor, stakeholder participation, Asphalt pavements, Climate models, Decision making, Decision support systems, Environmental impact, Soil mechanics, Stabilization, Climate impacts, Data availability, Decision supports, Life Cycle Assessment (LCA), Road reconstruction project, Soil stabilization, Traffic-related, Uncertainty assessment, Life cycle, climate effect, decision support system, energy use, life cycle analysis, road, stakeholder, Sweden
National Category
Environmental Management
Identifiers
urn:nbn:se:kth:diva-284771 (URN)10.1080/15568318.2020.1788679 (DOI)000549047400001 ()2-s2.0-85088117299 (Scopus ID)
Note

QC 20201109

Available from: 2020-11-09 Created: 2020-11-09 Last updated: 2022-06-25Bibliographically approved
Liljenström, C., Toller, S., Åkerman, J. & Björklund, A. (2019). Annual climate impact and primary energy use of Swedish transport infrastructure. European Journal of Transport and Infrastructure Research, 19(2), 77-+
Open this publication in new window or tab >>Annual climate impact and primary energy use of Swedish transport infrastructure
2019 (English)In: European Journal of Transport and Infrastructure Research, ISSN 1567-7133, E-ISSN 1567-7141, Vol. 19, no 2, p. 77-+Article in journal (Refereed) Published
Abstract [en]

By 2045, Sweden is to have zero net emissions of greenhouse gases. To reach this goal, stakeholders involved in planning and construction of Swedish transport infrastructure aim to half their climate impact by 2030. Planning for emission reduction measures require network level studies showing environmental impacts of the infrastructure network. Previous studies do not allow assessment of current hotspots in the infrastructure network, which limits their relevance for decision-support in this question. The aim of this paper is to assess the current annual climate impact and primary energy use of Swedish transport infrastructure by using a methodological approach based on life cycle assessment. The scope includes new construction and management (operation, maintenance, and reinvestment) of existing roads, railways, airports, ports, and fairway channels. The annual climate impact was estimated to 2.8 million tonnes carbon dioxide equivalents and the annual primary energy use was estimated to 27 terawatt hours. Mainly road and rail infrastructure contributed to these impacts. Environmental hotspots of the infrastructure network were management of the infrastructure stock (particularly reinvestment of road and rail infrastructure) and material production (particularly production of asphalt, steel, and concrete). If climate targets are to be met, these areas are particularly important to address. Additional research on impacts of small construction measures, the size of biogenic carbon emissions (in standing biomass as well as soil carbon), and the use and impacts of asphalt for road construction and management would further increase the understanding of impacts related to Swedish transport infrastructure at the network level.

Keywords
climate impact, energy use, life cycle assessment, network level, Sweden, transport infrastructure
National Category
Other Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-255372 (URN)10.18757/ejtir.2019.19.2.4378 (DOI)000474896700001 ()2-s2.0-85071697384 (Scopus ID)
Note

Correction in: European Journal of Transport and Infrastructure Research, vol. 20, issue. 2, page. 36 - 40. DOI:10.18757/ejtir.2019.19.2.4378, ScopusID:2-s2.0-85087401525 

QC 20190730

Available from: 2019-07-30 Created: 2019-07-30 Last updated: 2023-12-07Bibliographically approved
Liljenström, C. (2018). Life cycle assessment in early planning of transport systems: Decision support at project and network levels. (Licentiate dissertation). Stockholm, Sweden: KTH Royal Institute of Technology
Open this publication in new window or tab >>Life cycle assessment in early planning of transport systems: Decision support at project and network levels
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The Swedish Climate Policy Framework implies that the Swedish transport sector must reduce its greenhouse gas emissions to nearly zero by 2045. Previous studies have – using life cycle assessment – shown that indirect greenhouse gas emissions from the vehicle and infrastructure life cycle are significant and should be considered in transport policy and planning of transport systems, in addition to direct emissions of vehicle operation.

The aim of this thesis is to contribute with knowledge on climate impact and primary energy use of transport systems for decision-support in early planning at project and network levels, and evaluate and demonstrate how life cycle climate impact and primary energy use can be assessed in early planning. This thesis includes three papers that contribute to achieving this aim. Paper I developed a methodological approach to assess annual climate impact and primary energy use of Swedish road, rail, air, and sea transport infrastructure at a network level. Paper II then expanded this system to the assessment of the Swedish transport system at a network level, including national and international freight and passenger transport by road, rail, air, and sea. At the project level, Paper III examined how LCA can be used as decision-support in choice of road corridor, considering the practical prerequisite of data availability in early planning and usefulness of results in the decision-making process.

Paper I showed that the annual climate impact of Swedish transport infrastructure is around 3 million tonnes CO2 equivalents and that the annual primary energy use is around 27 TWh. Road infrastructure accounted for the largest proportion of impacts – around 70% of the climate impact and around 80% of the energy use. Paper II showed that the annual climate impact of the Swedish transport system was around 44 million tonnes CO2 equivalents and the primary energy use was around 178 TWh. Road transport and aviation together accounted for 90% of the climate impact and primary energy use. Indirect impacts were significant, especially for road and rail transport, accounting for 30% of the total climate impact and primary energy use. Paper III found that (1) collection of project specific data should focus on parameters that differentiate the road corridors, that can be influenced in early planning, and that are not directly related to the road length and (2) life cycle assessment based models used in early planning should include nation specific generic data approved by the national road authority. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018
Series
TRITA-ABE-DLT ; 1826
National Category
Other Natural Sciences
Identifiers
urn:nbn:se:kth:diva-239600 (URN)978-91-7873-013-1 (ISBN)
Presentation
2018-12-20, Pacific, KTH Royal Institute of Technology, Teknikringen 10B, Stockholm, Sweden, 10:00 (Swedish)
Opponent
Supervisors
Note

QC 20181128

Available from: 2018-11-28 Created: 2018-11-27 Last updated: 2023-12-07Bibliographically approved
Liljenström, C. & Malmqvist, T. (2016). Resource use and greenhouse gas emissions of office fit-outs - A case study. In: CESB 2016 - Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future. Paper presented at Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future, CESB 2016, 22 June 2016 through 24 June 2016 (pp. 182-189). Grada Publishing
Open this publication in new window or tab >>Resource use and greenhouse gas emissions of office fit-outs - A case study
2016 (English)In: CESB 2016 - Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future, Grada Publishing, 2016, p. 182-189Conference paper, Published paper (Refereed)
Abstract [en]

The aim of this paper was to investigate the type and quantity of material resources used and waste generated in an office fit-out project, and to quantif' the embodied energy and greenhouse gas emissions associated with the fit-out. The study was performed for an office lit-out project, typical for large property owners and attractive office premises, in an office building in central Stockholm, Sweden. The total embodied greenhouse gas emissions of the fit-out project amounted to 74.5 kg C02-equivalents/m2 and the total embodied energy to 1 .7 Gum2. Depending on frequency of fit-outs, the embodied greenhouse gas emissions and energy of fit-outs could exceed the embodied greenhouse gas emissions and energy of the initial construction or operational energy use seen in a life-cycle perspective.

Place, publisher, year, edition, pages
Grada Publishing, 2016
Keywords
Case study, Contribution to climate change, Life-cycle assessment, Office fit-out, Resource use, Climate change, Energy utilization, Gases, Greenhouse gases, Intelligent buildings, Life cycle, Natural resources management, Office buildings, Sustainable development, Life Cycle Assessment (LCA), Life cycle perspectives, Material resources, Operational energy, Property owners, Stockholm, Sweden, Gas emissions
National Category
Environmental Sciences Energy Engineering
Identifiers
urn:nbn:se:kth:diva-195453 (URN)2-s2.0-84986903229 (Scopus ID)9788027102488 (ISBN)
Conference
Central Europe Towards Sustainable Building 2016: Innovations for Sustainable Future, CESB 2016, 22 June 2016 through 24 June 2016
Note

Funding Details: Swedish Energy Agency

QC 20161128

Available from: 2016-11-28 Created: 2016-11-03 Last updated: 2024-03-18Bibliographically approved
Liljenström, C., Malmqvist, T., Erlandsson, M., Fredén, J., Adolfsson, I., Larsson, G. & Brogren, M. (2015). Byggandets klimatpåverkan: Livscykelberäkning av klimatpåverkan och energianvändning för ett nyproducerat energieffektivt flerbostadshus i betong. Sveriges Byggindustrier
Open this publication in new window or tab >>Byggandets klimatpåverkan: Livscykelberäkning av klimatpåverkan och energianvändning för ett nyproducerat energieffektivt flerbostadshus i betong
Show others...
2015 (Swedish)Report (Other academic)
Place, publisher, year, edition, pages
Sveriges Byggindustrier, 2015. p. 72
National Category
Other Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-147209 (URN)
Note

Denna rapport ersätter tidigare utgiven rapport "Byggproduktionens miljöpåverkan i förhållande till driften - Livscykelberäkning av klimatpåverkan och energianvändning av ett nyproducerat flerbostadshus i betong med lågenergiprofil". TRITA-INFRA-FMS, ISSN 1652-5442, 2014:02. ISBN: 978-91-7595-218-5.

QC 20150304

 

Available from: 2014-06-24 Created: 2014-06-24 Last updated: 2024-03-18Bibliographically approved
Liljenström, C. & Finnveden, G. (2015). Data for separate collection and recycling of dry recyclable materials. KTH Royal Institute of Technology
Open this publication in new window or tab >>Data for separate collection and recycling of dry recyclable materials
2015 (English)Report (Other academic)
Abstract [en]

The aim of this report is to present environmental and economic data for some collection and recycling processes in Sweden. The data can be used in Life Cycle Assessment and Life Cycle Costing analysis as well as other tools for assessing environmental and economic impacts of different waste management systems and strategies. The report provides data on kerbside collection of plastic and metal packaging, and beverage cartons in Sweden. For each material fraction the source segregation efficiency and quality of the separated waste streams is presented, followed by data on the processes collection at the kerbside, handling at transfer and sorting stations, and primary reprocessing at the recycling plant. The waste streams are followed to the point in which the secondary material can replace virgin materials.

For each process the following data is included (as relevant for each process): electricity, heat and fuel use, generation of waste and by products, transportation work, material input per tonne material output, process related CO2-emissions, and economic costs. The chapters that cover reprocessing at the recycling plants also include a discussion on which materials that can be replaced by waste, by-products, and the secondary material.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2015. p. 53
Series
TRITA-INFRA-FMS, ISSN 1652-5442 ; 2015:04
National Category
Other Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-176506 (URN)978-91-7595-776-0 (ISBN)
Note

QC 20160128

Available from: 2015-11-07 Created: 2015-11-07 Last updated: 2024-03-15Bibliographically approved
Miliutenko, S., Liljenström, C., Brattebø, H., Birgisdóttir, H., Toller, S., Lundberg, K. & Potting, J. (2014). Life cycle impacts during early stages of road infrastructure planning: a case study in Sweden. In: Transport Research Arena (TRA) 2014 Proceedings: . Paper presented at Transport Research Arena (TRA) 5th Conference; Paris, France, 2014-4-14 to 2014-4-17.
Open this publication in new window or tab >>Life cycle impacts during early stages of road infrastructure planning: a case study in Sweden
Show others...
2014 (English)In: Transport Research Arena (TRA) 2014 Proceedings, 2014Conference paper, Published paper (Refereed)
Abstract [en]

Road infrastructure has effects on the environment throughout all of its life cycle phases: construction,maintenance, operation and end-of-life. It has been observed, however, that these life cycle impacts are notusually considered during early stages of road infrastructure planning (i.e. decisions on road corridor).The recently developed LICCER tool enables assessment of road corridor alternatives during early stages of roadinfrastructure planning. It includes input data for roads, bridges and tunnels. It also considers future emissionsfrom traffic. The life cycle impact categories covered are energy use and contribution to climate change.The developed tool is being tested in a case study. Construction of a specific road in Sweden was used todemonstrate how the model is able to show differences between road corridor alternatives. Sensitivity analysiswas applied to show the robustness of its results.

Abstract [fr]

L'infrastructure routière a des impacts environnementaux dans toutes les différentes étapes d'analyse du cycle devie : la construction, l'entretien, l'utilisation et la fin de vie. Il a été constaté, cependant, que ces impacts du cyclede vie ne sont généralement pas considérés dans les premiers stades de la planification de l'infrastructure routière(en décident sur le corridor de la route).L’outil LICCER récemment développé permet d'évaluer des alternatives de corridors routiers au cours despremières étapes de la planification de l'infrastructure routière. Il comprend des données d'entrée pour les routes,les ponts et les tunnels. Il considère également les émissions futures de trafic. Les impacts environnementauxconsidérés sont la consommation d'énergie et contribution au changement climatique. L'outil est testé dans uneétude de cas. Construction d'une route spécifique en Suède a été utilisée pour démontrer comment le modèle estcapable de montrer les différences entre les alternatives de corridors routiers. Une analyse de sensibilité a étéeffectué de montrer la robustesse de résultats.

National Category
Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-145071 (URN)
Conference
Transport Research Arena (TRA) 5th Conference; Paris, France, 2014-4-14 to 2014-4-17
Note

QC 20150331

Available from: 2014-05-08 Created: 2014-05-08 Last updated: 2024-03-18Bibliographically approved
Börjesson Rivera, M., Henriksson, G. & Liljenström, C. (2014). Lådcyklar och bilfria vardagsliv. Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Lådcyklar och bilfria vardagsliv
2014 (Swedish)Report (Other academic)
Abstract [sv]

För att skapa en miljömässigt hållbar stad behöver människorna i den ha anledning och möjlighet att anpassa sina vardagliga vanor i linje med stadens hållbara utveckling. I denna rapport behandlas vanor i form av vardagliga resor och transporter, t ex inköp av dagligvaror. Mer specifikt har undersökts hur tillgång till ett lådcykelsystem skulle kunna bidra till möjligheter att leva bilfria liv.  Studien ingick som del av det större projektet Innovativ Parkering för klimatsmarta städer.  De boende i en bostadsrättsförening i Bagarmossen, en av Stockholms södra förorter, fick tillgång till en lådcykelpool, d v s tre så kallade lådcyklar (lastcyklar med tre hjul och stor låda) som de fick boka och använda som de ville april-november 2013. Vi frågade oss på vilket sätt tillgången till lådcykelpoolen påverkade de boendes rese- och transportvanor i vardagen.

Den kvantitativa delen av studien visade att nästan 20 % av hushållen bokade cyklarna en eller fler gånger och 5 % av hushållen använde cyklarna 10 gånger eller fler under försökets period. Gemensamt för de som använt cyklarna flitigt har, enligt de kvalitativa intervjuerna, varit en vilja att leva ett bilfritt vardagsliv samt att man hade flera olika slags transportbehov. Lådcyklarna har använts till utflykter och ärenden, det vill säga både nöjes- och nyttoresor.

Bland förutsättningarna för lådcykelförsökets framgång fann vi en positiv inställning till lådcykelpoolen i föreningen – även bland medlemmar som inte själva använde lådcyklarna. Vi fann också goda fysiska förutsättningar för cykling i Bagarmossen med omnejd samt att föreningen valt att bygga vidare på redan existerande praktiker vad gäller bokningsförfarande. Därutöver resonerar vi kring att lådcykelförsöket kunde varit än mer lyckosamt om även ansvarsfördelningen för cykelunderhållet samt informationsspridning och instruktion byggt vidare på föreningens redan inarbetade praktiker med särskilda arbetsgrupper. Kopplat till detta visade sig också viktiga frågor vara en noggrann och konsekvent introduktion av lådcyklarna samt att lådcyklarna står på ett synligt ställe för de presumtiva användarna.

Lådcykelanvändning kanske inte är för alla boende och ej heller i alla situationer, men vi tror att om ovan nämnda lärdomar beaktas så är chanserna att en mobilitetstjänst som en lådcykelpool, når en optimal användningsgrad.

Abstract [en]

In order to create an environmentally sustainable city people in it need to have reason and opportunity to adjust their everyday habits in line with the city's sustainable development. This report covers the habits in the form of everyday travel and transportation, such as grocery shopping. More specifically examined is how access to a cargo bike system could contribute to the ability to live car-free lives. The study was included as part of the larger project Innovative Parking for climate-smart cities. The residents of a housing association in Bagarmossen, one of Stockholm's southern suburbs, had access to a cargo bike pool with three cargo bikes that they were allowed to book and use as they wanted from April to November 2013. We asked ourselves how access to the cargo bike pool affected the residents' travel and transport habits in daily life.

The quantitative part of the study showed that nearly 20% of households booked the bikes at one or more occasions and that 5% of households used bicycles 10 times or more during the study period. In common for those who used the bike frequently, according to the qualitative interviews, was a desire to live a car-free everyday life and that they had several different kinds of transportation needs. The cargo bikes have been used for outings and errands, i.e. both leisure and utility trips.

Among the conditions for the cargo bike pool trial being successful, we found a positive attitude towards the cargo bike pool in the housing association - even among members themselves did not use the cargo bikes. We also found good conditions for cycling in the Bagarmossen vicinity and that the housing association decided to build on existing practices regarding the booking procedure. In addition, we discuss if the cargo bike pool trial could have been even more successful if the division of responsibility for bicycle maintenance and dissemination of information and instruction also would have been built on the association’s already established practices with particular task groups. Other issues linked to this were the importance of a thorough and consistent introduction of the cargo bikes and that the cargo bikes are placed in a visible place for the prospective users.

Cargo bikes may not be for all residents, or suitable for every occasion, but we believe that if the above-mentioned lessons are taken into account the chances of a mobility service such as a cargo bike pool, reaching an optimum utilization rate are increased.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. iii, 34
Series
TRITA-INFRA-FMS, ISSN 1652-5442 ; 20014:01
Keywords
Lådcyklar, Hållbar stadsutveckling, Mobilitetslösningar, Flexibla parkeringstal
National Category
Social Sciences Interdisciplinary
Research subject
Planning and Decision Analysis
Identifiers
urn:nbn:se:kth:diva-143629 (URN)978-91-7595-081-5 (ISBN)
Projects
Innovativ Parkering
Funder
Vinnova
Note

QC 20140331

Available from: 2014-03-26 Created: 2014-03-26 Last updated: 2024-03-18Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-0231-7111

Search in DiVA

Show all publications