Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 22) Show all publications
Jara, R., Lawoko, M. & van Heiningen, A. (2019). Intrinsic dissolution kinetics and topochemistry of xylan, mannan, and lignin during auto-hydrolysis of red maple wood meal. Canadian Journal of Chemical Engineering, 97(3), 649-661
Open this publication in new window or tab >>Intrinsic dissolution kinetics and topochemistry of xylan, mannan, and lignin during auto-hydrolysis of red maple wood meal
2019 (English)In: Canadian Journal of Chemical Engineering, ISSN 0008-4034, E-ISSN 1939-019X, Vol. 97, no 3, p. 649-661Article in journal (Refereed) Published
Abstract [en]

High temperature aqueous treatment of wood is the preferred technology for deconstructing lignocellulosics. Many studies have been carried out on the kinetics and mechanism of hot-water extraction. However, most were performed in batch or integral plug flow reactors, which are not optimal for measuring intrinsic dissolution kinetics of the lignocellulosic components. Therefore, we used a continuous mixed batch reactor (or Berty reactor) to determine the intrinsic dissolution kinetics of xylan, mannan, and lignin from milled hardwood (Acer rubrum) at three different temperatures (150, 160, and 170 degrees C) and four constant pH values: 2, 3, 4, and 5. During the initial phase of autohydrolysis (carbohydrate-free), lignin and (lignin-free) xylan dissolve starting at a high rate and then a slowly decreasing rate, respectively. This is followed by the dissolution of xylan-lignin complexes and finally cellulose xylan complexes when cellulose has been significantly hydrolysed. The kinetics and molecular weight distribution of the removed wood polymers are used to describe the topochemistry of autohydrolysis based on recent knowledge of the ultrastructure of hardwood fibres.

Place, publisher, year, edition, pages
WILEY, 2019
Keywords
biomass conversion, auto-hydrolysis, kinetics, mechanism, continuous mixed batch reactor
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-245131 (URN)10.1002/cjce.23373 (DOI)000458447500004 ()2-s2.0-85061384863 (Scopus ID)
Note

QC 20190313

Available from: 2019-03-13 Created: 2019-03-13 Last updated: 2019-06-11Bibliographically approved
Jawerth, M., Johansson, M. & Lawoko, M. (2019). Renewable thermosetting resins based on refined technical lignin: fractionation, modification and valorization. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Renewable thermosetting resins based on refined technical lignin: fractionation, modification and valorization
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257603 (URN)000478860503063 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190919

Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved
Olsen, P., Jawerth, M., Lawoko, M., Johansson, M. & Berglund, L. (2019). Transforming technical lignins to structurally defined star-copolymers under ambient conditions. Green Chemistry, 21(9), 2478-2486
Open this publication in new window or tab >>Transforming technical lignins to structurally defined star-copolymers under ambient conditions
Show others...
2019 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, no 9, p. 2478-2486Article in journal (Refereed) Published
Abstract [en]

Transforming biomass derived components to materials with controlled and predictable properties is a major challenge. Current work describes the controlled synthesis of starcopolymers with functional and degradable arms from the Lignoboost (R) process. Macromolecular control is achieved by combining lignin fractionation and characterization with ring-opening copolymerization (ROCP). The cyclic monomers used are epsilon-caprolactone (epsilon CL) and a functional carbonate monomer, 2-allyloxymethyl-2-ethyltrimethylene carbonate (AOMEC). The synthesis is performed at ambient temperature, under bulk conditions, in an open flask, and the graft composition and allyl functionality distribution are controlled by the copolymerization kinetics. Emphasis is placed on understanding the initiation efficiency, structural changes to the lignin backbone and the final macromolecular architecture. The present approach provides a green, scalable and cost effective protocol to create well-defined functional macromolecules from technical lignins.

National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-252978 (URN)10.1039/c9gc00835g (DOI)000468627300033 ()2-s2.0-85065578205 (Scopus ID)
Note

QC 20190814

Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14Bibliographically approved
Gioia, C., Lo Re, G., Lawoko, M. & Berglund, L. (2019). Tunable polymer systems containing well-characterized derivatives from lignin. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Tunable polymer systems containing well-characterized derivatives from lignin
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257588 (URN)000478860502788 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190919

Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved
Giummarella, N., Pu, Y., Ragauskas, A. J. & Lawoko, M. (2018). A Critical Review on the Analysis of Lignin Carbohydrate Bonds. Green Chemistry
Open this publication in new window or tab >>A Critical Review on the Analysis of Lignin Carbohydrate Bonds
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed) Published
Abstract [en]

Replacing fossil-based resources with renewable alternatives is generally acknowledged as a critical component to address several of today's environmental concerns. In this context, lignocellulosic biomass is an attractive, sustainable resource. However, the constitutional biopolymers of interest are locked in the structural complexity of the plant cell walls, which defines their properties and contributes to fractionation recalcitrance. One of the key suspects restricting fractionation of the biopolymers in high yield is the presence of lignin-carbohydrate bonds forming a matrix referred to as Lignin-Carbohydrate Complexes (LCC). Nevertheless, covalent bonds between lignin and carbohydrates, remain one of the most controversial topics in lignocellulose chemistry. This challenge can be attributed to the slow progress made in their research, which also forms the basis for this review. Herein, we will critically discuss the literature with a particular focus on the latest characterization and analytical techniques. Discussions on existing techniques and, importantly the drawbacks with them should be compelling to researchers in the area, especially at this time when crucial issues surrounding the realization of biorefineries need to be addressed.

National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-245994 (URN)10.1039/c8gc03606c (DOI)000464318800002 ()2-s2.0-85063790743 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20190318

Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-05-14Bibliographically approved
Giummarella, N., Gioia, C. & Lawoko, M. (2018). A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform. Green Chemistry
Open this publication in new window or tab >>A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed) Published
Abstract [en]

Lignin is the most abundant renewable source of phenolic compound with great application potential in renewable materials, biofuels and platform chemicals. Current technology for producing cellulose-rich fibers co-produces heterogeneous lignin, which includes an untapped source of monomeric phenolics. One such monomer also happen to be the main monomer in soft wood lignin biosynthesis, namely coniferyl alcohol. Herein, we investigate the potential of coniferyl alcohol as a platform monomer for the biomimetic production of tailored functionalized oligolignols with desirable properties for material synthesis. Accordingly, a bifunctional molecule with at least one carboxyl-ended functionality is included with coniferyl alcohol in biomimetic lignin synthesis to, in one-pot, produce a functionalized lignin. The functionalization mechanism is a nucleophilic addition reaction to quinone methide intermediate of lignin polymerization. The solvent systems applied were pure water or 50% aqueous acetone. Several bi-functional molecules differing in the second functionality were successfully inserted in the lignin demonstrating the platform component of this work. Detailed characterizations were performed by a combination of NMR techniques which include 1H NMR, COSY-90, 31P NMR, 13C NMR, 13C APT, HSQC, HMBC and HSQC TOCSY. Excellent selectivity towards benzylic carbon and high functionalization degree were noted. The structure of lignin was tailored through solvent system choice, with the 50% aqeuous acetone producing a skeletal structure favorable for high functionalization degrees. Finally, material concepts are demonstrated using classical Thiol-ene- and Diels Alder- chemistries to show potential for thermoset- and thermoplastic- concepts, respectively. The functionalization concept presents unprecedentent opportunities for green production of lignin-based recyclable biomaterials.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018
National Category
Wood Science
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-227163 (URN)10.1039/C8GC01145A (DOI)000434313100026 ()2-s2.0-85048051690 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180509

Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-07-17Bibliographically approved
Jawerth, M., Johansson, M., Lundmark, S., Gioia, C. & Lawoko, M. (2018). A retrosynthesis perspective on new thermoset resin applications based on industrial Kraft lignin. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>A retrosynthesis perspective on new thermoset resin applications based on industrial Kraft lignin
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-240159 (URN)000435537703036 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20190111

Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2019-01-11Bibliographically approved
Martinez-Abad, A., Giummarella, N., Lawoko, M. & Vilaplana, F. (2018). Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chemistry
Open this publication in new window or tab >>Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed) Published
Abstract [en]

Hardwoods constitute an essential renewable resource for the production of platform chemicals and bio-based materials. A method for the sequential extraction of hemicelluloses and lignin from hardwoods is proposed using subcritical water in buffered conditions without prior delignification. This allows the cascade isolation of mannan, xylan and lignin-carbohydrate complexes based on their extractability and recalcitrance in birch lignocellulose. The time evolution of the extraction was monitored in terms of composition, oligomeric mass profiling and sequencing of the hemicelluloses, and molecular structure of the lignin and lignin-carbohydrate complexes (LCCs) by heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR). The minor mannan and pectin populations are easily extractable at short times (<5 min), whereas the major glucuronoxylan (GX) becomes enriched at moderate extraction times. Longer extraction times results in major hydrolysis exhibiting GX fractions with tighter glucuronation spacing and lignin enrichment. The pattern of acetylation and glucuronation in GX is correlated with extractability and with connectivity with lignin through LCCs. This interconnected molecular heterogeneity of hemicelluloses and lignin has important implications for their supramolecular assembly and therefore determines the recalcitrance of hardwood lignocellulosic biomass.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018
National Category
Wood Science
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-226948 (URN)10.1039/C8GC00385H (DOI)000434313100016 ()2-s2.0-85048032938 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180509

Available from: 2018-04-29 Created: 2018-04-29 Last updated: 2018-06-27Bibliographically approved
Martinez-Abad, A., Quero, A. J., Berglund, J., Giummarella, N., Henriksson, G., Lindström, M., . . . Vilaplana, F. (2018). Influence of the molecular structure of wood hemicelluloses on the recalcitrance of lignocellulosic biomass. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>Influence of the molecular structure of wood hemicelluloses on the recalcitrance of lignocellulosic biomass
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-240163 (URN)000435537702769 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20190111

Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2019-01-11Bibliographically approved
Henriksson, G., Berglund, J., Wohlert, J., Lawoko, M., Aminzadeh, S., Lindström, M. & Vilaplana, F. (2018). Non-cellulose wood polysaccharides - a need for a stricter structural and functional classification?. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>Non-cellulose wood polysaccharides - a need for a stricter structural and functional classification?
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-240158 (URN)000435537702766 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20190108

Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-01-08Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8614-6291

Search in DiVA

Show all publications