kth.sePublications
Change search
Link to record
Permanent link

Direct link
Andersson, Anders F.ORCID iD iconorcid.org/0000-0002-3627-6899
Alternative names
Publications (10 of 97) Show all publications
Miraldo, A., Andersson, A. F., Ronquist, F. & et al., . (2025). Data of the Insect Biome Atlas: a metabarcoding survey of the terrestrial arthropods of Sweden and Madagascar. Scientific Data, 12(1), Article ID 835.
Open this publication in new window or tab >>Data of the Insect Biome Atlas: a metabarcoding survey of the terrestrial arthropods of Sweden and Madagascar
2025 (English)In: Scientific Data, E-ISSN 2052-4463, Vol. 12, no 1, article id 835Article in journal (Refereed) Published
Abstract [en]

We present the data from the Insect Biome Atlas project (IBA), characterizing the terrestrial arthropod faunas of Sweden and Madagascar. Over 12 months, Malaise trap samples were collected weekly (biweekly or monthly in the winter, when feasible) at 203 locations within 100 sites in Sweden and weekly at 50 locations within 33 sites in Madagascar; this was complemented by soil and litter samples from each site. The field samples comprise 4,749 Malaise trap, 192 soil and 192 litter samples from Sweden and 2,566 Malaise trap and 190 litter samples from Madagascar. Samples were processed using mild lysis or homogenization, followed by DNA metabarcoding of CO1 (418 bp). The data comprise 698,378 non-chimeric sequence variants from Sweden and 687,866 from Madagascar, representing 33,989 (33,046 Arthropoda) and 77,599 (77,380 Arthropoda) operational taxonomic units, respectively. These are the most comprehensive data presented on these faunas so far, allowing unique analyses of the size, composition, spatial turnover and seasonal dynamics of the sampled communities. They also provide an invaluable baseline against which to gauge future changes.

Place, publisher, year, edition, pages
Springer Nature, 2025
National Category
Ecology Bioinformatics and Computational Biology
Identifiers
urn:nbn:se:kth:diva-364136 (URN)10.1038/s41597-025-05151-0 (DOI)40399316 (PubMedID)2-s2.0-105005942368 (Scopus ID)
Note

QC 20250605

Available from: 2025-06-04 Created: 2025-06-04 Last updated: 2025-06-05Bibliographically approved
Iwaszkiewicz-Eggebrecht, E., Goodsell, R. M., Bengsson, B. Å., Mutanen, M., Klinth, M., Van Dijk, L. J. .., . . . Ronquist, F. (2025). High-throughput biodiversity surveying sheds new light on the brightest of insect taxa. Proceedings of the Royal Society of London. Biological Sciences, 292(2046), Article ID 20242974.
Open this publication in new window or tab >>High-throughput biodiversity surveying sheds new light on the brightest of insect taxa
Show others...
2025 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 292, no 2046, article id 20242974Article in journal (Refereed) Published
Abstract [en]

DNA metabarcoding of species-rich taxa is becoming a popular high-throughput method for biodiversity inventories. Unfortunately, its accuracy and efficiency remain unclear, as results mostly pertain to poorly known taxa in underexplored regions. This study evaluates what an extensive sampling effort combined with metabarcoding can tell us about the lepidopteran fauna of Sweden - one of the best-understood insect taxa in one of the most-surveyed countries of the world. We deployed 197 Malaise traps across Sweden for a year, generating 4749 bulk samples for metabarcoding, and compared the results to existing data sources. We detected more than half (1535) of the 2990 known Swedish lepidopteran species and 323 species not reported during the sampling period by other data providers. Full-length barcoding confirmed three new species for the country, substantial range extensions for two species and eight genetically distinct barcode variants potentially representing new species, one of which has since been described. Most new records represented small, inconspicuous species from poorly surveyed regions, highlighting components of the fauna overlooked by traditional surveying. These findings demonstrate that DNA metabarcoding is a highly efficient and accurate biodiversity sampling method, capable of yielding significant new discoveries even for the most well known of insect faunas.

Place, publisher, year, edition, pages
The Royal Society, 2025
Keywords
biodiversity monitoring, DNA barcoding, high-throughput survey, metabarcoding, species discovery, Swedish Lepidoptera
National Category
Ecology Biological Systematics Zoology
Identifiers
urn:nbn:se:kth:diva-364032 (URN)10.1098/rspb.2024.2974 (DOI)001486851600005 ()40359979 (PubMedID)2-s2.0-105005366288 (Scopus ID)
Note

QC 20250603

Available from: 2025-06-02 Created: 2025-06-02 Last updated: 2025-06-03Bibliographically approved
Herlemann, D. P. R., Delgado, L. F., Riedinger, D. J., Fernandez-Juarez, V., Andersson, A. F., Pansch, C., . . . Labrenz, M. (2025). Low impact of Zostera marina meadows on sediment and water microbiota under brackish conditions. Environmental Microbiome, 20(1), Article ID 2.
Open this publication in new window or tab >>Low impact of Zostera marina meadows on sediment and water microbiota under brackish conditions
Show others...
2025 (English)In: Environmental Microbiome, E-ISSN 2524-6372, Vol. 20, no 1, article id 2Article in journal (Refereed) Published
Abstract [en]

BackgroundZostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions. Changes in salinity generally have a strong impact on the biota, especially at the salty divide between salinity 6 and 9. To better understand the impact of the salty divide on the interaction between Z. marina and the surrounding sediment and water microbiota, we investigated the effects of Z. marina meadows on the surrounding microbiota across a salinity range of 6-15 in the Baltic Sea during the summer using 16S and 18S rRNA gene amplicon sequencing.ResultsSalinity was the most important factor for structuring the microbiota within both water and sediment. The presence of Z. marina affected the composition of the bacterial and eukaryotic community and bacterial alpha diversity in the sediment. However, this effect was confined to alpha-mesohaline conditions (salinity 9-15). The impact of Z. marina below salinity 9 on water and sediment microbiota was insignificant.ConclusionsIncreasing salinity was associated with a longer leaf length of Z. marina, causing an increased canopy height, which affects the sediment microbiota through reduced water velocity. Hence, we propose that the canopy effect may be the major predictor explaining Z. marina's interactions with the surrounding microbiota at salinity 9-15. These findings emphasize the importance of the physical effects of Z. marina meadow ecosystem services and have important implications for Z. marina management under brackish conditions in a changing climate.

Place, publisher, year, edition, pages
Springer Nature, 2025
Keywords
Coastal zone, Salinity, Horohalinicum, Baltic Sea, Bacterial community, Microeukaryotic community, Seagrass, Littoral, Eelgrass
National Category
Ecology
Identifiers
urn:nbn:se:kth:diva-359549 (URN)10.1186/s40793-024-00662-6 (DOI)001394544900001 ()39799374 (PubMedID)2-s2.0-85218205091 (Scopus ID)
Note

QC 20250205

Available from: 2025-02-05 Created: 2025-02-05 Last updated: 2025-02-26Bibliographically approved
Latz, M., Andersson, A., Brugel, S., Hedblom, M., Jurdzinski, K. T., Karlson, B., . . . Andersson, A. F. (2024). A comprehensive dataset on spatiotemporal variation of microbial plankton communities in the Baltic Sea. Scientific Data, 11(1), Article ID 18.
Open this publication in new window or tab >>A comprehensive dataset on spatiotemporal variation of microbial plankton communities in the Baltic Sea
Show others...
2024 (English)In: Scientific Data, E-ISSN 2052-4463, Vol. 11, no 1, article id 18Article in journal (Refereed) Published
Abstract [en]

The Baltic Sea is one of the largest brackish water environments on earth and is characterised by pronounced physicochemical gradients and seasonal dynamics. Although the Baltic Sea has a long history of microscopy-based plankton monitoring, DNA-based metabarcoding has so far mainly been limited to individual transect cruises or time-series of single stations. Here we report a dataset covering spatiotemporal variation in prokaryotic and eukaryotic microbial communities and physicochemical parameters. Within 13-months between January 2019 and February 2020, 341 water samples were collected at 22 stations during monthly cruises along the salinity gradient. Both salinity and seasonality are strongly reflected in the data. Since the dataset was generated with both metabarcoding and microscopy-based methods, it provides unique opportunities for both technical and ecological analyses, and is a valuable biodiversity reference for future studies, in the prospect of climate change.

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Ecology
Identifiers
urn:nbn:se:kth:diva-342167 (URN)10.1038/s41597-023-02825-5 (DOI)001135385400018 ()38168085 (PubMedID)2-s2.0-85181259194 (Scopus ID)
Note

QC 20240115

Available from: 2024-01-15 Created: 2024-01-15 Last updated: 2024-02-06Bibliographically approved
Mazur-Marzec, H., Andersson, A. F., Błaszczyk, A., Da̜bek, P., Górecka, E., Grabski, M., . . . Węgrzyn, A. (2024). Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiology Reviews, 48(5)
Open this publication in new window or tab >>Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes
Show others...
2024 (English)In: FEMS Microbiology Reviews, ISSN 0168-6445, E-ISSN 1574-6976, Vol. 48, no 5Article, review/survey (Refereed) Published
Abstract [en]

Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.

Place, publisher, year, edition, pages
Oxford University Press, 2024
Keywords
Baltic Sea, diversity of microorganisms, marine ecosystem, marine viruses, molecular methods, prokaryotic and eukaryotic microorganisms
National Category
Microbiology Ecology
Identifiers
urn:nbn:se:kth:diva-355917 (URN)10.1093/femsre/fuae024 (DOI)001340902700001 ()39366767 (PubMedID)2-s2.0-85207594337 (Scopus ID)
Note

QC 20241108

Available from: 2024-11-06 Created: 2024-11-06 Last updated: 2024-11-15Bibliographically approved
Riedinger, D. J., Fernández-Juárez, V., Delgado, L. F., Sperlea, T., Hassenrück, C., Herlemann, D. P. R., . . . Labrenz, M. (2024). Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management. Communications Earth & Environment, 5(1), Article ID 246.
Open this publication in new window or tab >>Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management
Show others...
2024 (English)In: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 5, no 1, article id 246Article in journal (Refereed) Published
Abstract [en]

Due to climate change the pathogenic bacterium Vibrio vulnificus proliferates along brackish coastlines, posing risks to public health, tourism, and aquaculture. Here we investigated previously suggested regulation measures to reduce the prevalence of V. vulnificus, locally through seagrass and regionally through the reduction of eutrophication and consequential formation of algal blooms. Field samples collected in the summer of 2021 covered the salinity and eutrophication gradients of the Baltic Sea, one of the largest brackish areas worldwide. Physico-, biological- and hydrochemical parameters were measured and variables explaining V. vulnificus occurrence were identified by machine learning. The best V. vulnificus predictors were eutrophication-related features, such as particulate organic carbon and nitrogen, as well as occurrence of potential phytoplankton blooms and associated species. V. vulnificus abundance did not vary significantly between vegetated and non-vegetated areas. Thus, reducing nutrient inputs could be an effective method to control V. vulnificus populations in eutrophied brackish coasts.

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Biological Sciences
Identifiers
urn:nbn:se:kth:diva-346454 (URN)10.1038/s43247-024-01410-x (DOI)001219638000003 ()2-s2.0-85192525039 (Scopus ID)
Funder
Academy of Finland, 344743Swedish Research Council Formas, 2020-02366
Note

QC 20240524

Available from: 2024-05-15 Created: 2024-05-15 Last updated: 2024-05-24Bibliographically approved
Gyraite, G., Katarzyte, M., Bucas, M., Kalvaitiene, G., Kube, S., Herlemann, D. P. R., . . . Labrenz, M. (2024). Epidemiological and environmental investigation of the 'big four' Vibrio species, 1994 to 2021: a Baltic Sea retrospective study. Eurosurveillance, 29(32), Article ID 2400075.
Open this publication in new window or tab >>Epidemiological and environmental investigation of the 'big four' Vibrio species, 1994 to 2021: a Baltic Sea retrospective study
Show others...
2024 (English)In: Eurosurveillance, ISSN 1025-496X, E-ISSN 1560-7917, Vol. 29, no 32, article id 2400075Article in journal (Refereed) Published
Abstract [en]

Background: The Vibrio genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections. Aim: To provide a comprehensive retrospective analysis of Vibrio-induced infections in the BSR from 1994 to 2021, focusing on the 'big four' Vibrio species - V. alginolyticus, , V. cholerae non-O1/O139, V. parahaemolyticus and V. vulnificus - in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea. Methods: Our analysis includes data on infections, Vibrio species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the Vibrio infection rate. Results: For BSR countries conducting surveillance, we observed an exponential increase in total Vibrio infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of Vibrio spp. and infections caused by V. alginolyticus and V. parahaemolyticus positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of Vibrio spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance. Conclusions: There are discrepancies in Vibrio surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.

Place, publisher, year, edition, pages
European Centre for Disease Control and Prevention (ECDC), 2024
National Category
Microbiology
Identifiers
urn:nbn:se:kth:diva-354571 (URN)10.2807/1560-7917.ES.2024.29.32.2400075 (DOI)001319500200004 ()39119721 (PubMedID)2-s2.0-85201031282 (Scopus ID)
Note

QC 20241008

Available from: 2024-10-08 Created: 2024-10-08 Last updated: 2024-10-08Bibliographically approved
Bittner, M. J., Bannon, C. C., Rowland, E., Sundh, J., Bertrand, E. M., Andersson, A. F., . . . Riemann, L. (2024). New chemical and microbial perspectives on vitamin B1 and vitamer dynamics of a coastal system. ISME Communications, 4(1), Article ID ycad016.
Open this publication in new window or tab >>New chemical and microbial perspectives on vitamin B1 and vitamer dynamics of a coastal system
Show others...
2024 (English)In: ISME Communications, E-ISSN 2730-6151, Vol. 4, no 1, article id ycad016Article in journal (Refereed) Published
Abstract [en]

Vitamin B1 (thiamin, B1) is an essential micronutrient for cells, yet intriguingly in aquatic systems most bacterioplankton are unable to synthesize it de novo (auxotrophy), requiring an exogenous source. Cycling of this valuable metabolite in aquatic systems has not been fully investigated and vitamers (B1-related compounds) have only begun to be measured and incorporated into the B1 cycle. Here, we identify potential key producers and consumers of B1 and gain new insights into the dynamics of B1 cycling through measurements of B1 and vitamers (HMP: 4-amino-5-hydroxymethyl-2-methylpyrimidine, HET: 4-methyl-5-thiazoleethanol, FAMP: N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine) in the particulate and dissolved pool in a temperate coastal system. Dissolved B1 was not the primary limiting nutrient for bacterial production and was relatively stable across seasons with concentrations ranging from 74-117 pM, indicating a balance of supply and demand. However, vitamer concentration changed markedly with season as did transcripts related to vitamer salvage and transport suggesting use of vitamers by certain bacterioplankton, e.g. Pelagibacterales. Genomic and transcriptomic analyses showed that up to 78% of the bacterioplankton taxa were B1 auxotrophs. Notably, de novo B1 production was restricted to a few abundant bacterioplankton (e.g. Vulcanococcus, BACL14 (Burkholderiales), Verrucomicrobiales) across seasons. In summer, abundant picocyanobacteria were important putative B1 sources, based on transcriptional activity, leading to an increase in the B1 pool. Our results provide a new dynamic view of the players and processes involved in B1 cycling over time in coastal waters, and identify specific priority populations and processes for future study.

Place, publisher, year, edition, pages
Oxford University Press (OUP), 2024
Keywords
marine microbiology, vitamin B1, vitamin, thiamin, LC/MS, metagenomics, bacterioplankton, auxotrophy
National Category
Ecology
Identifiers
urn:nbn:se:kth:diva-356509 (URN)10.1093/ismeco/ycad016 (DOI)001345381000005 ()
Note

QC 20241209

Available from: 2024-11-15 Created: 2024-11-15 Last updated: 2024-12-09Bibliographically approved
Bard, S., Jacobsson, S., Pizzul, L., Haglund, E., Andersson, A. F., Morgan-Sagastume, F. & Delgado, L. F. (2024). Pulp Wastewater Treatment Using Anaerobic Moving Bed Biofilm Reactors: A Case-Study. In: International Conference on Wider-Uptake of Water Resource Recovery from Wastewater Treatment, ICWRR 2024: . Paper presented at International Conference on Wider-Uptake of Water Resource Recovery from Wastewater Treatment, ICWRR 2024, Palermo, Italy, Jun 18 2024 - Jun 21 2024 (pp. 234-239). Springer Nature
Open this publication in new window or tab >>Pulp Wastewater Treatment Using Anaerobic Moving Bed Biofilm Reactors: A Case-Study
Show others...
2024 (English)In: International Conference on Wider-Uptake of Water Resource Recovery from Wastewater Treatment, ICWRR 2024, Springer Nature , 2024, p. 234-239Conference paper, Published paper (Refereed)
Abstract [en]

The pulp and paper (P&P) industry holds significant global importance. However, the industry’s processes substantially demand water and energy resources. Consequently, there is a pressing need for the industry to adopt more sustainable production practices, aiming to trim environmental impact and strengthen resilience against climate change. Recent research has highlighted the potential for substantial increases in Swedish biogas production using anaerobic wastewater (WW) treatment methods within P&P mills. The P&P sector traditionally relies on aerobic biological WW treatment, overlooking the valuable opportunity for WW resource recovery. This study aims to evaluate anaerobic moving bed biofilm reactors (AnMBBR) to enhance energy recovery while enabling treatment capacity for the P&P industry’s anaerobic WW treatment. The results of this study showed the resilience of the AnMBBR system. It proved capable of recovering from overload conditions and operating even during prolonged periods at low pH levels. However, the system removes mainly soluble COD, suggesting higher capabilities on P&P WW with a high fraction of soluble COD. Its ability to produce methane-rich biogas demonstrates efficient gas production while maintaining simple operational procedures.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
AnMBBR, biofilm, CTMP
National Category
Water Treatment Other Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-350714 (URN)10.1007/978-3-031-63353-9_41 (DOI)2-s2.0-85197870918 (Scopus ID)
Conference
International Conference on Wider-Uptake of Water Resource Recovery from Wastewater Treatment, ICWRR 2024, Palermo, Italy, Jun 18 2024 - Jun 21 2024
Note

Part of ISBN 9783031633522

QC 20240719

Available from: 2024-07-17 Created: 2024-07-17 Last updated: 2025-02-10Bibliographically approved
van Dijk, L. J. .., Fisher, B. L., Miraldo, A., Goodsell, R. M., Iwaszkiewicz-Eggebrecht, E., Raharinjanahary, D., . . . Tack, A. J. .. (2024). Temperature and water availability drive insect seasonality across a temperate and a tropical region. Proceedings of the Royal Society of London. Biological Sciences, 291(2025), Article ID 20240090.
Open this publication in new window or tab >>Temperature and water availability drive insect seasonality across a temperate and a tropical region
Show others...
2024 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 291, no 2025, article id 20240090Article in journal (Refereed) Published
Abstract [en]

The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.

Place, publisher, year, edition, pages
The Royal Society, 2024
Keywords
arthropods, flying insect biomass, phenology, seasonality, spatial distribution, tropical and temperate climates
National Category
Ecology
Identifiers
urn:nbn:se:kth:diva-349908 (URN)10.1098/rspb.2024.0090 (DOI)38889793 (PubMedID)2-s2.0-85196588141 (Scopus ID)
Note

QC 20240703

Available from: 2024-07-03 Created: 2024-07-03 Last updated: 2024-07-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3627-6899

Search in DiVA

Show all publications