kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 21) Show all publications
Linder, D., Walbrühl, M., Ågren, J. & Borgenstam, A. (2020). Indentation behavior of highly confined elasto-plastic materials. International Journal of Solids and Structures, 193-194, 69-78
Open this publication in new window or tab >>Indentation behavior of highly confined elasto-plastic materials
2020 (English)In: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 193-194, p. 69-78Article in journal (Refereed) Published
Abstract [en]

The effect of geometric confinement is well-known from hardness measurements of thin films on stiff substrates and has been modeled both phenomenologically and using e.g. Finite Element Analysis. However, these models are mainly focused on a specific experiment or a certain material family. In the present work, Finite Element Analysis is used to gain a better understanding of the interplay between geometric constraints in various microstructures and a wide range of materials properties. It is shown that a very simple model can be used to replicate thin film hardness data where the film is softer than the substrate as well as how materials properties alter the indentation behavior of materials confined in one to three dimensions. It is shown that qualitative agreement with nanoindentation of the metallic binder phase in the complex 3D-microstructure of a cemented carbide is achieved using an axisymmetric “pill-box” model with classical plasticity. It is also shown that the effect of higher-order confinement can be described by the Korsunsky thin film hardness model by re-optimizing the fitting parameters.

Place, publisher, year, edition, pages
Elsevier, 2020
Keywords
Complex microstructure, Composite, Finite element analysis, Hardness, Nanoindentation
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-276374 (URN)10.1016/j.ijsolstr.2020.01.025 (DOI)000535723400006 ()2-s2.0-85079523867 (Scopus ID)
Note

QC 20200612

Available from: 2020-06-12 Created: 2020-06-12 Last updated: 2024-03-15Bibliographically approved
Linder, D., Yan, J.-Y., Walbrühl, M., Ågren, J. & Borgenstam, A. (2020). Modeling confined ductile fracture - A void-growth and coalescence approach. International Journal of Solids and Structures, 202, 454-462
Open this publication in new window or tab >>Modeling confined ductile fracture - A void-growth and coalescence approach
Show others...
2020 (English)In: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 202, p. 454-462Article in journal (Refereed) Published
Abstract [en]

In a composite material a soft, ductile matrix can be confined by a hard, brittle phase, altering its deformation and fracture behavior. Increasing confinement leads to embrittlement of the matrix and, in turn, also the composite. From a materials design perspective, it is usually desired to avoid brittle fracture without compromising the hardness of the material. Understanding confined ductile fracture is therefore critical for modeling the mechanical response of composite materials with fine microstructure. The present work is focused on confined ductile fracture of a thin ductile film, with elasto-plastic power-law hardening behavior, sandwiched between ideal linear elastic substrates. Fracture of the ductile layer is modeled by growth and coalescence of prescribed voids in 2D. Influences of material properties, initial void volume fraction, geometric constraints and elastic mismatch are investigated. The results show a loss of ductility with decreasing film thickness that is accompanied by a severe decrease in fracture initiation toughness as well as an increased stress at the interface. The influence of materials properties is significant in all cases while the effect of initial void volume fraction is comparatively less critical for highly confined materials than for bulk materials. Increasing confinement also results in increasing normal stress at the phase interface, promoting interface decohesion prior to ductile fracture of the film. The present approach and results are a step towards more detailed prediction of composite fracture toughness and crack-growth resistance.

Place, publisher, year, edition, pages
Elsevier BV, 2020
Keywords
Confined ductile fracture, Void-growth and coalescence, Composite material, Fracture toughness, Finite element modeling
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-284273 (URN)10.1016/j.ijsolstr.2020.06.039 (DOI)000573218100035 ()2-s2.0-85087718602 (Scopus ID)
Note

QC 20201027

Available from: 2020-10-27 Created: 2020-10-27 Last updated: 2022-10-24Bibliographically approved
Linder, D. (2020). Towards computational materials design and upscaling of alternative binder cemented carbides. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Towards computational materials design and upscaling of alternative binder cemented carbides
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Increasing demands on economic, social and environmental sustainability throughout society is putting pressure on the development of new and improved materials for resource efficiency, improved component life-time and substitution of toxic or rare elements. For the cemented carbide industry, as a major provider of tools for e.g. mining and metal cutting which are integral parts of many production chains, this may require complete or partial substitution of cobalt. Cobalt ore is primarily mined in conflict regions and cobalt powder has been shown to be carcinogenic upon inhalation. Substitution of this element could therefore have significant impact on several aspects of society. However, it is far from trivial to substitute this critical element in cemented carbide production. Nearly a century of materials and product development has made state-of-the-art cemented carbides with cobalt binder phase one of the most successful engineering materials. Over the years, accumulated investments throughout the supply chain has made these materials indispensable in industrial production. When envisioning cobalt substitution, it is therefore critical to generate new methods for accelerated materials development and standardised materials qualification. This will enable faster and more reliable development of new materials with the potential to substitute cobalt throughout the industry.

The present thesis is focused on the continued development of an integrated computational materials engineering framework for materials design as well as the development of quality control methods for alternative binder cemented carbides. The existing computational framework is here extended with a model for fracture toughness which allows for property trade-off between hardness and toughness. The extended framework is shown to replicate experimentally well-established property combinations and is thereby applicable for computational design of cemented carbides for specific applications. Furthermore, conventional quality control methods based on magnetic properties are evaluated and further developed for alternative binder cemented carbides. Combining these results on computational materials design and the steps towards standardised quality control has the potential to greatly accelerate future development of cemented carbides, both for cobalt substitution and for improved component life-time.

Abstract [sv]

Ökande krav på ekonomisk, social och miljömässig hållbarhet i samhället sätter press på utvecklingen av nya och förbättrade material för resurseffektivitet, ökad komponentlivslängd och substitution av toxiska ämnen. Inom hårdmetallindustrin, som producerar verktyg till exempelvis gruvbrytning och metallbearbetning vilket är centrala delar av många produktionskedjor, kan detta kräva total eller partiell substitution av kobolt. Koboltmineral utvinns huvudsakligen i konfliktregioner och koboltpulver har visats vara cancerogent vid inhalering. Koboltsubstitution kan därför ha betydande effekt på flera aspekter av samhället. Det är däremot långt ifrån trivialt att ersätta en så central komponent i hårdmetallproduktion. Närmare ett århundrande av material- och produktutveckling har gjort modern hårdmetall med kobolt som bindefas till ett av de mest framgångsrika materialen. Genom åren har ackumulerade investeringar genom hela leverantörskedjan gjort dessa material oumbärliga inom industriell produktion. I samband med visionen om koboltsubstituton är det därför kritsikt att generera nya metoder för accelererad materialutveckling och standardiserad materialkvalificering. Detta skulle medföra snabbare och mer tillförlitlig utveckling och introduktion av nya material med potential att ersätta kobolt genomgående i industrin. 

Den här avhandlingen fokuserar på fortsatt utvekling av ett beräkningsbaserat ramverk för materialdesign enligt konceptet ”Integrated Computational Materials Engineering” samt utvecklingen av metoder för kvalitetskontroll av hårdmetall med alternativa bindefaser. Den existerande beräkningsplattformen utvecklas vidare med en modell för brottseghet. Detta medför möjligheten att med hjälp av beräkningar göra avvägningar mellan hårdhet och seghet genom design av mikrostrukturen. Det utökade ramverket påvisas upprepa empiriskt väletablerade samband mellan mikrostruktur och mekansika egenskaper och kan därmed tillämpas för beräkningsbaserad materialdesign av hårdmetall för specifika tillämpningar. Utöver detta utvärderas tillämpbarheten av konventionella metoder för kvalitetskontroll, baserade på magnetiska egenskaper, för hårdmetall med alternativa bindefaser. En kombination av resultaten kring beräkningsbaserad materialdesign och stegen mot standardiserad kvalitetskontroll har potential att accelerera framtida utveckling av hårdmetall, både för koboltsubstitution och förbättrad materiallivslängd.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 160
Series
TRITA-ITM-AVL ; 2020:5
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-266818 (URN)978-91-7873-433-7 (ISBN)
Public defence
2020-02-21, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2020-01-31 Created: 2020-01-24 Last updated: 2022-06-26Bibliographically approved
Linder, D., Hou, Z., Xie, R., Hedström, P., Ström, V., Holmström, E. & Borgenstam, A. (2019). A comparative study of microstructure and magnetic properties of a Ni–Fe cemented carbide: Influence of carbon content. International journal of refractory metals & hard materials, 80, 181-187
Open this publication in new window or tab >>A comparative study of microstructure and magnetic properties of a Ni–Fe cemented carbide: Influence of carbon content
Show others...
2019 (English)In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 80, p. 181-187Article in journal (Refereed) Published
Abstract [en]

Due to the renewed interest in alternative binders for cemented carbides it is important to understand how the binder composition influences not only mechanical properties but also the microstructure and related measurements for quality control. Microstructure and chemical composition of WC-Co is often evaluated by magnetic measurements. However, when the binder composition deviates significantly from conventional Co-based binders it should not be assumed that the standard measurements can be used to directly evaluate the same parameters. In this paper we investigate the influence of relative C-content on the microstructure and magnetic properties of an alternative binder cemented carbide. It is shown that the saturation magnetization is related to the relative C-content and the magnetic coercivity is related to the microstructure, more specifically to the binder phase distribution, but could not be directly linked to the carbide grain size in the same manner as for standard WC-Co. Furthermore, a direct correlation between Curie temperature and saturation magnetization is observed for this system which means that the Curie temperature potentially could be used for calibration of empirical relations or as a method to accurately determine the binder volume fraction.

Place, publisher, year, edition, pages
Elsevier Ltd, 2019
Keywords
Alternative binder, Cemented carbide, Cermet, Cobalt substitution, Magnetic properties, Metal-matrix composite, Microstructure
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-246465 (URN)10.1016/j.ijrmhm.2019.01.014 (DOI)000460992100018 ()2-s2.0-85060087544 (Scopus ID)
Note

QC 20190326

Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2022-10-24Bibliographically approved
Hou, Z., Linder, D., Hedström, P., Ström, V., Holmström, E. & Borgenstam, A. (2019). Evaluating magnetic properties of composites from model alloys – Application to alternative binder cemented carbides. Scripta Materialia, 168, 96-99
Open this publication in new window or tab >>Evaluating magnetic properties of composites from model alloys – Application to alternative binder cemented carbides
Show others...
2019 (English)In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 168, p. 96-99Article in journal (Refereed) Published
Abstract [en]

The magnetic properties of 85Ni-15Fe model alloys containing Co, W and C have been studied with the intent to isolate the influence of alloy chemistry on quality control measurements of alternative binder cemented carbides. The results show a strong influence of dissolved W on the Curie temperature and the saturation magnetization. The amount of dissolved C, and the presence of WC precipitates, on the other hand, is shown to have negligible effect. Furthermore, the magnetic coercivity is indicated to be entirely dominated by the microstructural features and quite insensitive to composition.

Place, publisher, year, edition, pages
Acta Materialia Inc, 2019
Keywords
Alternative binder, Cemented carbide, Magnetic properties, Metal-ceramic composite, Ni-Fe model alloy, Binary alloys, Binders, Carbide tools, Carbides, Cobalt alloys, Nickel alloys, Saturation magnetization, Alloy chemistry, Cemented carbides, FE model, Magnetic coercivities, Metal-ceramic composites, Microstructural features, Properties of composites, Quality control measurement, Iron alloys
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-252472 (URN)10.1016/j.scriptamat.2019.04.033 (DOI)000470798400021 ()2-s2.0-85064921201 (Scopus ID)
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2024-01-10Bibliographically approved
Walbrühl, M., Linder, D., Bonvalet, M., Ågren, J. & Borgenstam, A. (2019). ICME guided property design: Room temperature hardness in cemented carbides. Materials & design, 161, 35-43
Open this publication in new window or tab >>ICME guided property design: Room temperature hardness in cemented carbides
Show others...
2019 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 161, p. 35-43Article in journal (Refereed) Published
Abstract [en]

The potential change in EU regulations may affect the traditional W-C-Co based cemented carbides industry and a methodology is required to accelerate the materials development with alternative binders. This work presents the ICME (Integrated Computational Materials Engineering) framework and the improved models that will enable tailor-made materials design of cemented carbides. The cemented carbide hardness is one of the key properties of the composites and here its close relation to the binder composition is in focus. Modeling the influence of alternative binder materials on the hardness of cemented carbides offers a way to optimize the composite properties of prospective binder candidates virtually, thereby reducing the development time and costs drastically compared to a classical trial-and-error method. The outline of a genetic algorithm is presented and the integration of the required models and tools, that are, or will become, available within this ICME framework, are presented.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
ICME, Hardness, Solubility, Solid solution strengthening, Genetic algorithm
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-240990 (URN)10.1016/j.matdes.2018.11.029 (DOI)000453745400004 ()2-s2.0-85056645666 (Scopus ID)
Note

QC 20190110

Available from: 2019-01-10 Created: 2019-01-10 Last updated: 2024-06-13Bibliographically approved
Xie, R., Lizárraga, R., Linder, D., Hou, Z., Ström, V., Lattemann, M., . . . Vitos, L. (2019). Quantum mechanics basis of quality control in hard metals. Acta Materialia, 169, 1-8
Open this publication in new window or tab >>Quantum mechanics basis of quality control in hard metals
Show others...
2019 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 169, p. 1-8Article in journal (Refereed) Published
Abstract [en]

Non-destructive and reliable quality control methods are a key aspect to designing, developing and manufacturing new materials for industrial applications and new technologies. The measurement of the magnetic saturation is one of such methods and it is conventionally employed in the cemented carbides industry. We present a general quantum mechanics based relation between the magnetic saturation and the components of the binder phase of cemented carbides, which can be directly employed as a quality control. To illustrate our results, we calculate the magnetic saturation of a binder phase, 85Ni15Fe binary alloy, using ab-initio methods and compare the theoretical predictions to the magnetic saturation measurements. We also analyse interface and segregation effects on the magnetic saturation by studying the electronic structure of the binder phase. The excellent agreement between calculations and measurements demonstrates the applicability of our method to any binder phase. Since the magnetic saturation is employed to ensure the quality of cemented carbides, the present method allows us to explore new materials for alternative binder phases efficiently.

Place, publisher, year, edition, pages
Acta Materialia Inc, 2019
Keywords
Ab-initio calculations, Binder phase, Hard metal, Magnetic saturation
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-246425 (URN)10.1016/j.actamat.2019.02.036 (DOI)000465365300001 ()2-s2.0-85062451846 (Scopus ID)
Note

QC 20190401

Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2024-03-18Bibliographically approved
Walbrühl, M., Linder, D., Ågren, J. & Borgenstam, A. (2018). A new hardness model for materials design in cemented carbides. International journal of refractory metals & hard materials, 75, 94-100
Open this publication in new window or tab >>A new hardness model for materials design in cemented carbides
2018 (English)In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 75, p. 94-100Article in journal (Refereed) Published
Abstract [en]

The Materials Design approach offers new possibilities towards property-oriented materials development. The performance of cemented carbides is significantly influenced by properties like the hardness and fracture toughness. Fundamentally based phenomenological models, which allow for prediction of the properties of interest, make it possible to tailor the properties of the material based on the required performance. None of the previously available models are suitable to actively design the cemented carbide hardness because they are valid only for Co binders and do not allow alternative binder phases. The hardness is greatly influenced by the chemistry, binder volume fraction and carbide grain size. Only the chemistry, specifically the binder composition, leaves the possibility to optimize the binder hardness and to exceed classical WC-Co cemented carbides. Specifically focusing on the design of the binder phase, a new binder hardness description is implemented in a modified Engqvist hardness model and allows description of a wider range of conventional and alternative systems. The model was validated for various published cemented carbide systems and is able to predict their hardness within a 10% error. The assessed systems contain classical Co binders as well as alternative, austenitic binders based on Fe, Ni and Co.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Alternative binder, Cemented carbides, ICME, Materials design, Solid solution strengthening, Thermo-Calc
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-227506 (URN)10.1016/j.ijrmhm.2018.04.004 (DOI)000437362100013 ()2-s2.0-85045428618 (Scopus ID)
Note

QC 20180518

Available from: 2018-05-18 Created: 2018-05-18 Last updated: 2022-10-24Bibliographically approved
Walbrühl, M., Linder, D., Ågren, J. & Borgenstam, A. (2018). Alternative Ni-based cemented carbide binder – Hardness characterization by nano-indentation and focused ion beam. International journal of refractory metals & hard materials, 73, 204-209
Open this publication in new window or tab >>Alternative Ni-based cemented carbide binder – Hardness characterization by nano-indentation and focused ion beam
2018 (English)In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 73, p. 204-209Article in journal (Refereed) Published
Abstract [en]

The nano-hardness in the alternative 85Ni-15Fe binder phase of WC cemented carbide has been investigated. High-resolution scanning electron microscopy (SEM) imaging was used to measure the projected indentation area and a general pile-up correction, confirmed on selected indents, has been employed using atomic force microscopy (AFM). Focused ion-beam (FIB) cross-sections have been used to investigate the binder morphology below the indentations and the local binder hardness has been associated to the distance to the surrounding WC grains. Generally, decreasing distance to the WC grains leads to increased binder hardness. Furthermore, the nano-hardness for the cemented carbide binder has been corrected for the indentation size effect (ISE) to obtain the corresponding macroscopic hardness. A solid solution strengthening model for multicomponent bulk alloys was used to calculate the expected binder Vickers hardness considering the binder solubilities of W and C. Both the strengthening model and the ISE corrected hardness values, for larger binder regions, are in good agreement indicating that the intrinsic binder phase hardness is similar to that of a bulk metal alloy with similar composition.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Alternative binder hardness, Binder shape, Cemented carbides, Constrained binder, Indentation size effect
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-227554 (URN)10.1016/j.ijrmhm.2018.02.017 (DOI)000430028800027 ()2-s2.0-85042350653 (Scopus ID)
Funder
Vinnova
Note

Not duplicate with DiVA 1140275

QC 20230202

Available from: 2018-05-16 Created: 2018-05-16 Last updated: 2024-03-15Bibliographically approved
Linder, D., Holmström, E. & Norgren, S. (2018). High entropy alloy binders in gradient sintered hardmetal. International journal of refractory metals & hard materials, 71, 217-220
Open this publication in new window or tab >>High entropy alloy binders in gradient sintered hardmetal
2018 (English)In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 71, p. 217-220Article in journal (Refereed) Published
Abstract [en]

High Entropy Alloys (HEAs) are a new group of multicomponent alloys showing great potential as bulk alloys in many fields, and their high temperature strength is especially of interest. In previous work (D. Linder, M.Sc Thesis "High Entropy Alloys - Alternative binders in cemented carbides", Linkoping University, Sweden (2015)) we have shown the possibility to produce cemented carbides with HEA-binders using standard powder metallurgical methods. The present work investigates the possibility to produce gradient sintered cemented carbides using HEA-binders. The materials are analyzed with regards to gradient depth, phases formed, phase composition and carbide grain size. The gradient formation is investigated with respect to C-content and sintering process and the results are showing the possibility to form industrially relevant gradient depths using standard methods. These results open up a whole new range of possible applications for these materials and show the potential for future design of a wide composition range of alternative binders.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
High entropy alloy, Cemented carbide, Alternative binder, Gradient sintering
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-223267 (URN)10.1016/j.ijrmhm.2017.11.030 (DOI)000424068400029 ()2-s2.0-85034948514 (Scopus ID)
Note

QC 20180216

Available from: 2018-02-16 Created: 2018-02-16 Last updated: 2022-10-24Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-2754-6196

Search in DiVA

Show all publications