Change search
Link to record
Permanent link

Direct link
BETA
Fan, Lizhou
Publications (3 of 3) Show all publications
Fan, L., Zhang, P., Zhang, B., Daniel, Q., Timmer, B., Zhang, F. & Sun, L. (2018). 3D Core-Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation. ACS ENERGY LETTERS, 3(12), 2865-2874
Open this publication in new window or tab >>3D Core-Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation
Show others...
2018 (English)In: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 3, no 12, p. 2865-2874Article in journal (Refereed) Published
Abstract [en]

Low cost transition metal-based electrocatalysts for water oxidation and understanding their structure-activity relationship are greatly desired for clean and sustainable chemical fuel production. Herein, a core-shell (CS) NiFeCr metal/metal hydroxide catalyst was fabricated on a 3D Cu nanoarray by a simple electrodeposition-activation method. A synergistic promotion effect between electronic structure modulation and nanostructure regulation was presented on a CS-NiFeCr oxygen evolution reaction (OER) catalyst: the 3D nanoarchitecture facilitates the mass transport process, the in situ formed interface metal/metal hydroxide heterojunction accelerates the electron transfer, and the electronic structure modulation by Cr incorporation improves the reaction kinetics. Benefiting from the synergy between structural and electronic modulation, the catalyst shows excellent activity toward water oxidation under alkaline conditions: overpotential of 200 mV at 10 mA/cm(2) current density and Tafel slope of 28 mV/dec. This work opens up a new window for understanding the structure-activity relationship of OER catalysts and encourages new strategies for development of more advanced OER catalysts.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-241005 (URN)10.1021/acsenergylett.8b01897 (DOI)000453805100003 ()2-s2.0-85056263175 (Scopus ID)
Note

QC 20190109

Available from: 2019-01-09 Created: 2019-01-09 Last updated: 2019-01-09Bibliographically approved
Zhang, P., Li, L., Nordlund, D., Chen, H., Fan, L., Zhang, B., . . . Sun, L. (2018). Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nature Communications, 9(1), Article ID 381.
Open this publication in new window or tab >>Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
Show others...
2018 (English)In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, no 1, article id 381Article in journal (Refereed) Published
Abstract [en]

Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

Place, publisher, year, edition, pages
Nature Publishing Group, 2018
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-222290 (URN)10.1038/s41467-017-02429-9 (DOI)2-s2.0-85041107994 (Scopus ID)
Note

QC 20180206

Available from: 2018-02-06 Created: 2018-02-06 Last updated: 2018-02-06Bibliographically approved
Zhang, B., Li, Y., Valvo, M., Fan, L., Daniel, Q., Zhang, P., . . . Sun, L. (2017). Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic Δ-MnOx on Carbon Nanotubes. ChemSusChem, 10(22), 4472-4478
Open this publication in new window or tab >>Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic Δ-MnOx on Carbon Nanotubes
Show others...
2017 (English)In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 22, p. 4472-4478Article in journal (Refereed) Published
Abstract [en]

The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx/CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx/CNT/NF electrode gives a benchmark catalytic current density (10 mA cm−2) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm−2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.

Place, publisher, year, edition, pages
Wiley-VCH Verlag, 2017
Keywords
artificial photosynthesis, electrochemistry, manganese, turbostratic manganese oxide, water oxidation, Carbon, Carbon nanotubes, Electrocatalysts, Electrodes, Foams, Nanotubes, Nickel, Oxidation, Oxides, Yarn, Alkaline conditions, Annealing process, Catalytic current, Co-based catalysts, Oxygen-evolving complexes, Turbostratic, Manganese oxide, carbon nanotube, manganese derivative, oxide, water, catalysis, chemistry, electrochemical analysis, electrode, molecular mimicry, oxidation reduction reaction, photosystem II, procedures, solar energy, Electrochemical Techniques, Manganese Compounds, Nanotubes, Carbon, Oxidation-Reduction, Photosystem II Protein Complex
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-227139 (URN)10.1002/cssc.201700824 (DOI)000416158500023 ()28675680 (PubMedID)2-s2.0-85035013364 (Scopus ID)
Note

QC 20180503

Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2019-02-07Bibliographically approved
Organisations

Search in DiVA

Show all publications