Change search
Link to record
Permanent link

Direct link
BETA
Mittal, Nitesh
Publications (10 of 10) Show all publications
Söderberg, D., Hedhammar, M., Mittal, N., Jansson, R., Widhe, M., Benselfelt, T., . . . Lundell, F. (2019). Bioactive composites of cellulose nanofibrils and recombinant silk proteins. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Bioactive composites of cellulose nanofibrils and recombinant silk proteins
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257609 (URN)000478860502767 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-09-18Bibliographically approved
Brouzet, C., Mittal, N., Lundell, F. & Söderberg, D. (2019). Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale. Macromolecules, 52(6), 2286-2295
Open this publication in new window or tab >>Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale
2019 (English)In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 52, no 6, p. 2286-2295Article in journal (Refereed) Published
Abstract [en]

Polydisperse fiber networks are the basis of many natural and manufactured structures, ranging from high-performance biobased materials to components of living cells and tissues. The formation and behavior of such networks are given by fiber properties such as length and stiffness as well as the number density and fiber-fiber interactions. Studies of fiber network behavior, such as connectivity or rigidity thresholds, typically assume monodisperse fiber lengths and isotropic fiber orientation distributions, specifically for nano scale fibers, where the methods providing time-resolved measurements are limited. Using birefringence measurements in a microfluidic flow-focusing channel combined with a flow stop procedure, we here propose a methodology allowing investigations of length-dependent rotational dynamics of nanoscale polydisperse fiber suspensions, including the effects of initial nonisotropic orientation distributions. Transition from rotational mobility to rigidity at entanglement thresholds is specifically addressed for a number of nanocellulose suspensions, which are used as model nanofiber systems. The results show that the proposed method allows the characterization of the subtle interplay between Brownian diffusion and nanoparticle alignment on network dynamics.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-246216 (URN)10.1021/acs.macromol.8b02714 (DOI)000462950300007 ()2-s2.0-85062860050 (Scopus ID)
Note

QC 20190318. QC 20191031

Available from: 2019-03-17 Created: 2019-03-17 Last updated: 2019-10-31Bibliographically approved
Brett, C., Mittal, N., Ohm, W., Söderberg, D. & Roth, S. V. (2019). GISAS study of spray deposited metal precursor ink on a cellulose template. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>GISAS study of spray deposited metal precursor ink on a cellulose template
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257597 (URN)000478860503076 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190919

Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved
Mittal, N. (2019). Nanostructured Biopolymeric Materials: Hydrodynamic Assembly, Mechanical Properties and Bio-Functionalities. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Nanostructured Biopolymeric Materials: Hydrodynamic Assembly, Mechanical Properties and Bio-Functionalities
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The need for high-end multifunctional materials from renewable resources has evolved given a rapidly increasing population and accompanying environmental concerns. Scalable assembly methods are and will be imperative in designing high-performance environmentally friendly materials, requiring new processes allowing control on all hierarchical levels. In this thesis, engineering concepts for manipulation of nanoscale components from biopolymeric resources have been applied to achieve extraordinary macroscale performance. The route chosen has been fluid-phase assembly as it is one of the most promising methods for producing large, ordered structures from nanoscale objects.

 

The thesis has three main parts; assembly of cellulose nanofibrils (CNFs) and fundamentals associated with the processing technique, the combination of CNFs with silk fusion proteins and finally the assembly of amyloid-like protein nanofibrils (PNFs). In the CNFs assembly part, we have pursued the challenge of transferring the full potential of CNFs to macroscale materials. CNFs are the most abundant structural elements in biological systems and have impressively high strength and stiffness, yet natural or man-made cellulose composites are much weaker than the CNFs. We fabricated nanocellulose fibers in pursuit of maximal mechanical performance by hydrodynamically controlling the structural ordering of nanofibrils, resulting in continuous fibers with mechanical properties higher than any natural or man-made macroscale biopolymeric material (Young’s modulus 86 GPa and a tensile strength 1.57 GPa). As the hydrodynamic assembly process is largely dependent on fundamental phenomenon controlling rotational and translational diffusion, we have applied a novel methodology based on birefringence allowing time-resolved in-situ investigations of diffusion and network dynamics of nanofibrils including effects of anisotropic orientation distributions.

 

Genetic engineering enables the synthesis of bioengineered silk fusion proteins that can serve as a foundation of new biomaterials. However, silk proteins are difficult to process and cannot be obtained in large quantities from spiders. By combining CNFs with recombinant spider silk proteins (RSPs) we have fabricated strong, tough and bioactive nanocomposites.   We demonstrate how small amounts of silk fusion proteins added to CNFs give advanced bio-functionalities unattainable to wood-based CNFs alone. Finally, flow-assisted assembly is applied to fabricate a material from 100% non-crystalline protein building blocks with whey protein, a mixture with β-lactoglobulin as the main component, which self-assemble into amyloid-like PNFs stabilized by hydrogen bonds. We show how conditions during the fibrillation process affect properties and morphology of the PNFs. Furthermore, we compare the assembly of whey PNFs of distinct morphologies and show that PNFs can be assembled into strong microfibers without the addition of plasticizers or crosslinkers.

Abstract [sv]

Behovet av avancerade multifunktionella material från förnyelsebara råvaror ökar med en snabbt växande befolkning i världen och behovet av att värna om vår miljö. Skalbara framställningsprocesser är och kommer att vara avgörande för utformningen av dessa hållbara och miljövänliga material med hög prestanda, vilket kräver nya processer som möjliggör kontroll av materialens struktur på alla hierarkiska nivåer. I denna avhandling har ny teknologi för kontrollerad sammanfogning av nanokomponenter baserade på biopolymerer tillämpats för att uppnå extraordinära egenskaper på makroskopisk nivå. Den valda teknologin är baserad på strömningsmekanisk sammanfogning, vilket är en lovande metod för att kontinuerligt framställa makroskopiska strukturerade material från nanokomponenter.

Avhandlingen består av tre huvudspår; strömningsmekanisk sammanfogning av nanocellulosa (här syftar vi främst till cellulosananofibriller, CNF) och därtill associerade grundläggande frågeställningar kring processen kopplat till detta; framställning av material baserat på kombinationen av nanocellulosa med silkesproteiner och slutligen framställning av material bestående av amyloidliknande proteinnanofibriller (PNF). När det gäller sammanfogning av nanocellulosa har målet vara att förstå de förhållanden under vilka framställningen av makroskopiska material av CNF resulterar i materialegenskaper som förmår utnyttja de mekaniska egenskaperna hos nanokomponenterna. Nanocellulosa är det mest förekommande strukturella bio-baserade elementet på jorden och har en imponerande hög hållfasthet och styvhet, och naturliga och framställda cellulosamaterial har hittills varit mycket svagare än nanocellulosa. Genom att strömningsmekaniskt påverka hur nanocellulosan bildar nanostrukturen hos kontinuerliga fiberr, med målet om maximal mekanisk prestanda, har vi framställt fiberr som är starkare och styvare än något annat naturligt eller konstgjort biomaterial (elasticitetsmodul 86 GPa och draghållfasthet 1.57 GPa). Eftersom den strömningsmekaniska framställningsprocessen i stor utsträckning är beroende av grundläggande fenomen som rotationsdiffusion och nätverksgenerering av nanopartiklar, har vi även tillämpat en ny metod baserad på dubbelbrytning som möjliggör tidsbesparande in-situ karakterisering av rotationsdiffusion och nätverksdynamik för nanofibrillära komponenter, inklusive effekterna på anisotropa orienteringsfördelning.

Genteknik möjliggör syntes av silkesproteiner som kan tjäna som grund för nya biomaterial. Silkesproteiner är emellertid svåra att hanteras och kan bara erhållas i små mängder från spindlar. Genom att kombinera nanocellulosa med rekombinant spindelsilkeprotein har vi tillverkat starka, tåliga och bioaktiva nanokompositer. Vi visar hur små mängder silkesfusionsproteiner kan kombineras med nanocellulosa för att ge avancerad biofunktionalitet som inte kan uppnås med nanocellulosamaterial. Slutligen har den strömningsbaserade framställningsprocessen använts att tillverka material från 100% icke-kristallina byggstenar av vassleprotein. Dessa byggstenar består av en blandning med p-laktoglobulin som huvudkomponent, vilken självgenererar amyloidliknande proteinnanofibriller stabiliserade av vätebindningar. Vi visar hur förhållandena under fibrilleringsprocessen påverkar egenskaper och morfologin hos proteinnanofibrillerna. Slutligen framställs material av proteinnanofibriller med olika morfologier, där vi visar hur dessa kan sammanfogas i starka kontinuerliga fiberr utan tillsats av mjukgörare eller tvärbindande komponenter.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 87
Series
TRITA-SCI-FOU ; 2019:5
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-243487 (URN)978-91-7873-088-9 (ISBN)
Public defence
2019-03-15, F3, Lindstedtsvägen 26, floor 2, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190208

Available from: 2019-02-08 Created: 2019-02-07 Last updated: 2019-02-08Bibliographically approved
Mittal, N. (2019). Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films. Macromolecules
Open this publication in new window or tab >>Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films
2019 (English)In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835Article in journal (Refereed) Published
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-253346 (URN)10.1021/acs.macromol.9b00531 (DOI)000473248200034 ()2-s2.0-85067999337 (Scopus ID)
Note

QC 20190729

Available from: 2019-06-14 Created: 2019-06-14 Last updated: 2019-10-04Bibliographically approved
Mittal, N., Lundell, F., Wågberg, L., Hedhammar, M. & Söderberg, D. (2018). Flow-assisted organization of nanostructured bio-based materials. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>Flow-assisted organization of nanostructured bio-based materials
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-240164 (URN)000435537702785 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20190111

Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2019-01-11Bibliographically approved
Brett, C., Mittal, N., Ohm, W., Söderberg, D. & Roth, S. V. (2018). In situ self-assembly study in bio-based thin films. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>In situ self-assembly study in bio-based thin films
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-232279 (URN)000435539906263 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20180718

Available from: 2018-07-18 Created: 2018-07-18 Last updated: 2018-07-18Bibliographically approved
Mittal, N., Ansari, F., Gowda, K. V., Brouzet, C., Chen, P., Larsson, P. T., . . . Söderberg, D. (2018). Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano, 12(7), 6378-6388
Open this publication in new window or tab >>Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers
Show others...
2018 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 7, p. 6378-6388Article in journal (Refereed) Published
Abstract [en]

Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
Keywords
bio-based materials, selforganization, mechanical properties, microfluidics, cellulose nanofibrils, nanocompositesbio-based materials, selforganization, mechanical properties, microfluidics, cellulose nanofibrils, nanocomposites
National Category
Engineering and Technology
Research subject
Engineering Mechanics; Fibre and Polymer Science; Physics
Identifiers
urn:nbn:se:kth:diva-229288 (URN)10.1021/acsnano.8b01084 (DOI)000440505000004 ()29741364 (PubMedID)2-s2.0-85049865626 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180608

Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2019-10-16Bibliographically approved
Mittal, N., Kaldéus, T., Lundell, F. & Söderberg, D. (2017). Effect of cellulose nanofibril morphology on the strength and stiffness of macroscopic filaments. Paper presented at 253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA. Abstract of Papers of the American Chemical Society, 253
Open this publication in new window or tab >>Effect of cellulose nanofibril morphology on the strength and stiffness of macroscopic filaments
2017 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-243613 (URN)000430568503387 ()
Conference
253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA
Note

QC 20190205

Available from: 2019-02-05 Created: 2019-02-05 Last updated: 2019-02-05Bibliographically approved
Kamada, A., Mittal, N., Söderberg, D., Lendel, C. & Lundell, F. (2016). Assembly mechanism of nanostructured whey protein filaments. Abstracts of Papers of the American Chemical Society, 252
Open this publication in new window or tab >>Assembly mechanism of nanostructured whey protein filaments
Show others...
2016 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 252Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2016
National Category
Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-242627 (URN)000431460402815 ()
Note

QC 20190225

Available from: 2019-02-25 Created: 2019-02-25 Last updated: 2019-08-21Bibliographically approved
Organisations

Search in DiVA

Show all publications