Change search
Link to record
Permanent link

Direct link
Jansson, Ronnie
Publications (3 of 3) Show all publications
Petrou, G., Jansson, R., Högqvist, M., Hedhammar, M. & Crouzier, T. (2018). Engineering mucoadhesive silk. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstracts of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>Engineering mucoadhesive silk
Show others...
2018 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Chemical Sciences
urn:nbn:se:kth:diva-240166 (URN)000435537701238 ()
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA

OC 20190110

Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2019-08-20Bibliographically approved
Petrou, G., Jansson, R., Hogqvist, M., Erlandsson, J., Wågberg, L., Hedhammar, M. & Crouzier, T. (2018). Genetically Engineered Mucoadhesive Spider Silk. Biomacromolecules, 19(8), 3268-3279
Open this publication in new window or tab >>Genetically Engineered Mucoadhesive Spider Silk
Show others...
2018 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 8, p. 3268-3279Article in journal (Refereed) Published
Abstract [en]

Mucoadhesion is defined as the adhesion of a material to the mucus gel covering the mucous membranes. The mechanisms controlling mucoadhesion include nonspecific electrostatic interactions and specific interactions between the materials and the mucins, the heavily glycosylated proteins that form the mucus gel. Mucoadhesive materials can be used to develop mucosal wound dressings and noninvasive transmucosal drug delivery systems. Spider silk, which is strong, biocompatible, biodegradable, nontoxic, and lightweight would serve as an excellent base for the development of such materials. Here, we investigated two variants of the partial spider silk protein 4RepCT genetically engineered in order to functionalize them with mucoadhesive properties. The pLys-4RepCT variant was functionalized with six cationically charged lysines, aiming to provide nonspecific adhesion from electrostatic interactions with the anionically charged mucins, while the hGal3-4RepCT variant was genetically fused with the Human Galectin-3 Carbohydrate Recognition Domain which specifically binds the mucin glycans Gal beta 1-3GlcNAc and Gal beta 1-4GlcNAc. First, we demonstrated that coatings, fibers, meshes, and foams can be readily made from both silk variants. Measured by the adsorption of both bovine submaxillary mucin and pig gastric mucin, the newly produced silk materials showed enhanced mucin binding properties compared with materials of wild-type (4RepCT) silk. Moreover, we showed that pLys-4RepCT silk coatings bind mucins through electrostatic interactions, while hGal3-4RepCT silk coatings bind mucins through specific glycan-protein interactions. We envision that the two new mucoadhesive silk variants pLys-4RepCT and hGal3-4RepCT, alone or combined with other biofunctional silk proteins, constitute useful new building blocks for a range of silk protein-based materials for mucosal treatments.

Place, publisher, year, edition, pages
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
urn:nbn:se:kth:diva-234195 (URN)10.1021/acs.biomac.8b00578 (DOI)000441852400011 ()29932649 (PubMedID)2-s2.0-85049259614 (Scopus ID)

QC 20180920

Available from: 2018-09-20 Created: 2018-09-20 Last updated: 2019-04-13Bibliographically approved
Horak, J., Jansson, R., Dev, A., Nilebäck, L., Behnam, K., Linnros, J., . . . Eriksson Karlström, A. (2018). Recombinant Spider Silk as Mediator for One-Step, Chemical-Free Surface Biofunctionalization. Advanced Functional Materials, 28(21), Article ID 1800206.
Open this publication in new window or tab >>Recombinant Spider Silk as Mediator for One-Step, Chemical-Free Surface Biofunctionalization
Show others...
2018 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 21, article id 1800206Article in journal (Refereed) Published
Abstract [en]

A unique strategy for effective, versatile, and facile surface biofunctionalization employing a recombinant spider silk protein genetically functionalized with the antibody-binding Z domain (Z-4RepCT) is reported. It is demonstrated that Z-silk can be applied to a variety of materials and platform designs as a truly one-step and chemical-free surface modification that site specifically captures antibodies while simultaneously reducing nonspecific adsorption. As a model surface, SiO2 is used to optimize and characterize Z-silk performance compared to the Z domain immobilized by a standard silanization method. First, Z-silk adsorption is investigated and verified its biofunctionality in a long-term stability experiment. To assess the binding capacity and protein-protein interaction stability of Z-silk, the coating is used to capture human antibodies in various assay formats. An eightfold higher binding capacity and 40-fold lower detection limit are obtained in the immunofluorescence assay, and the complex stability of captured antibodies is shown to be improved by a factor of 20. Applicability of Z-silk to functionalize microfluidic devices is demonstrated by antibody detection in an electrokinetic microcapillary biosensor. To test Z-silk for biomarker applications, real-time detection and quantification of human immunoglobulin G are performed in a plasma sample and C1q capture from human serum using an anti-C1q antibody.

Place, publisher, year, edition, pages
biomarker, biosensing, C1q, surface biofunctionalization, Z-silk
National Category
Analytical Chemistry
urn:nbn:se:kth:diva-231216 (URN)10.1002/adfm.201800206 (DOI)000434030500011 ()2-s2.0-85047860287 (Scopus ID)

QC 20180628

Available from: 2018-06-28 Created: 2018-06-28 Last updated: 2018-11-23Bibliographically approved

Search in DiVA

Show all publications