Change search
Link to record
Permanent link

Direct link
BETA
Publications (9 of 9) Show all publications
Francon, H., Benselfelt, T., Granberg, H., Larsson, P. A. & Wågberg, L. (2019). 3D printable nanocellulose aerogels via a green crosslinking approach and a facile evaporation procedure. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>3D printable nanocellulose aerogels via a green crosslinking approach and a facile evaporation procedure
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257628 (URN)000478860502770 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190902

Available from: 2019-09-02 Created: 2019-09-02 Last updated: 2019-09-02Bibliographically approved
Söderberg, D., Hedhammar, M., Mittal, N., Jansson, R., Widhe, M., Benselfelt, T., . . . Lundell, F. (2019). Bioactive composites of cellulose nanofibrils and recombinant silk proteins. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Bioactive composites of cellulose nanofibrils and recombinant silk proteins
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257609 (URN)000478860502767 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-09-18Bibliographically approved
Benselfelt, T., Nordenström, M., Lindstrom, S. B. & Wågberg, L. (2019). Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces. Advanced Materials Interfaces, 6(13), Article ID 1900333.
Open this publication in new window or tab >>Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces
2019 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 13, article id 1900333Article in journal (Refereed) Published
Abstract [en]

Cellulose nanofibrils (CNFs) assemble into water-resilient materials in the presence of multivalent counter-ions. The essential mechanisms behind these assemblies are ion-ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (E-w proportional to phi(4)). Ions that induce both ion-ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter-ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short-range attraction from ion-ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

Place, publisher, year, edition, pages
WILEY, 2019
Keywords
cellulose nanofibrils, ion-ion correlation, multivalent ions, network, specific ion effects
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257579 (URN)10.1002/admi.201900333 (DOI)000478635700019 ()2-s2.0-85065451547 (Scopus ID)
Note

QC 20190920

Available from: 2019-09-20 Created: 2019-09-20 Last updated: 2019-11-11Bibliographically approved
Benselfelt, T., Nordenström, M., Hamedi, M. & Wågberg, L. (2019). Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects. Nanoscale, 11(8), 3514-3520
Open this publication in new window or tab >>Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects
2019 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 8, p. 3514-3520Article in journal (Refereed) Published
Abstract [en]

Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-245906 (URN)10.1039/c8nr10175b (DOI)000459504400008 ()30742178 (PubMedID)2-s2.0-85061966436 (Scopus ID)
Note

QC 20190308

Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-04-08Bibliographically approved
Engström, J., Benselfelt, T., Wågberg, L., D'Agosto, F., Lansalot, M., Carlmark, A. & Malmström, E. (2019). Tailored cationic PISA-latexes for strong adhesion to anionic surfaces: Importance of purity and chain-extension as shown by adsorption. Paper presented at 257th National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Tailored cationic PISA-latexes for strong adhesion to anionic surfaces: Importance of purity and chain-extension as shown by adsorption
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-257662 (URN)000478861206107 ()
Conference
257th National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190904

Available from: 2019-09-04 Created: 2019-09-04 Last updated: 2019-09-04Bibliographically approved
Engström, J., Hatton, F., Benselfelt, T., Freire, C., Vilela, C., Boujemaoui, A., . . . Malmström, E. (2019). Tailored PISA-latexes for modification of nanocellulosics: Investigating compatibilizing and plasticizing effects. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Tailored PISA-latexes for modification of nanocellulosics: Investigating compatibilizing and plasticizing effects
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257615 (URN)000478860503077 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-11-06Bibliographically approved
Engström, J., Benselfelt, T., Wågberg, L., D'Agosto, F., Lansalot, M., Carlmark, A. & Malmström, E. (2019). Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale, 11, 4287-4302
Open this publication in new window or tab >>Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state
Show others...
2019 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, p. 4287-4302Article in journal (Refereed) Published
Abstract [en]

Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-241447 (URN)10.1039/C8NR08057G (DOI)000465410200012 ()2-s2.0-85062644682 (Scopus ID)
Note

QC 20190123

Available from: 2019-01-22 Created: 2019-01-22 Last updated: 2019-05-29Bibliographically approved
Benselfelt, T., Engström, J. & Wågberg, L. (2018). Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties. Green Chemistry, 20(11), 2558-2570
Open this publication in new window or tab >>Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, no 11, p. 2558-2570Article in journal (Refereed) Published
Abstract [en]

Supramolecular double network films, consisting of cellulose nanofibrils (CNF) entangled with the algal polysaccharides alginate or carrageenan, were prepared using a rapid vacuum filtration process to achieve water-resistant CNF nanopapers with excellent mechanical properties in both the wet and dry states following the locking of the structures using Ca2+. The rigid network of calcium alginate was more efficient than the more flexible network of calcium carrageenan and 10% by weight of alginate was sufficient to form a network that suppressed the swelling of the CNF film by over 95%. The resulting material could be compared to a stiff rubber with a Young's modulus of 135 MPa, a tensile strength of 17 MPa, a strain-at-break above 55%, and a work of fracture close to 5 MJ m(-3) in the wet state, which was both significantly stronger and more ductile than the calcium-treated CNF reference nanopaper. It was shown that the state in which Ca2+ was introduced is crucial, and it is also hypothesized that the alginate works as a sacrificial network that prevents the CNF from aligning during loading and that this leads to the increased toughness. The material maintained its barrier properties at elevated relative humidities and the extensibility and ductility made possible hygroplastic forming into three-dimensional shapes. It is suggested that the attractive force in the CNF part of the double network in the presence of multivalent ions is due to the ion-ion correlation forces generated by the fluctuating counter-ion cloud, since no significant ion coordination was observed using FTIR.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2018
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-231187 (URN)10.1039/c8gc00590g (DOI)000434313100018 ()2-s2.0-85048040852 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180718

Available from: 2018-07-18 Created: 2018-07-18 Last updated: 2019-04-08Bibliographically approved
Benselfelt, T., Henschen, J., Pettersson, T. & Wågberg, L. (2016). Polyelectrolyte multilayers on differently charged cellulose surfaces. Abstracts of Papers of the American Chemical Society, 251
Open this publication in new window or tab >>Polyelectrolyte multilayers on differently charged cellulose surfaces
2016 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2016
National Category
Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-242667 (URN)000431903802454 ()
Note

QC 20190222

Available from: 2019-02-22 Created: 2019-02-22 Last updated: 2019-08-21Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4388-8970

Search in DiVA

Show all publications