Change search
Link to record
Permanent link

Direct link
BETA
Publications (6 of 6) Show all publications
Gensch, M., Schwartzkopf, M., Ohm, W., Brett, C., Pandit, P., Varalil, S. K., . . . Roth, S. V. (2019). Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition. ACS Applied Materials and Interfaces, 11(32), 29416-29426
Open this publication in new window or tab >>Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition
Show others...
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 32, p. 29416-29426Article in journal (Refereed) Published
Abstract [en]

Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly (methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
Keywords
polymer-metal interface, metal cluster percolation, growth kinetics, GISAXS, block copolymer
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-257808 (URN)10.1021/acsami.9b08594 (DOI)000481567100090 ()31313904 (PubMedID)2-s2.0-85071352839 (Scopus ID)
Note

QC 20190912

Available from: 2019-09-12 Created: 2019-09-12 Last updated: 2019-09-12Bibliographically approved
Glier, T. E., Akinsinde, L., Paufler, M., Otto, F., Hashemi, M., Grote, L., . . . Ruebhausen, M. (2019). Functional Printing of Conductive Silver-Nanowire Photopolymer Composites. Scientific Reports, 9, Article ID 6465.
Open this publication in new window or tab >>Functional Printing of Conductive Silver-Nanowire Photopolymer Composites
Show others...
2019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 6465Article in journal (Refereed) Published
Abstract [en]

We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Omega/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2019
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-251276 (URN)10.1038/s41598-019-42841-3 (DOI)000465218400016 ()31015552 (PubMedID)2-s2.0-85064889866 (Scopus ID)
Note

QC 20190514

Available from: 2019-05-14 Created: 2019-05-14 Last updated: 2019-05-29Bibliographically approved
Brett, C., Mittal, N., Ohm, W., Söderberg, D. & Roth, S. V. (2019). GISAS study of spray deposited metal precursor ink on a cellulose template. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>GISAS study of spray deposited metal precursor ink on a cellulose template
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257597 (URN)000478860503076 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190919

Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved
Ohm, W., Rothkirch, A., Pandit, P., Koerstgens, V., Mueller-Buschbaum, P., Rojas, R., . . . Roth, S. V. (2019). Morphological and crystalline properties of airbrush spray-deposited enzymatic cellulose thin films. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Morphological and crystalline properties of airbrush spray-deposited enzymatic cellulose thin films
Show others...
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257617 (URN)000478860502739 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-09-18Bibliographically approved
Li, N., Song, L., Biessmann, L., Xia, S., Ohm, W., Brett, C., . . . Mueller-Buschbaum, P. (2019). Morphology Phase Diagram of Slot-Die Printed TiO2 Films Based on Sol-Gel Synthesis. Advanced Materials Interfaces, 6(12), Article ID 1900558.
Open this publication in new window or tab >>Morphology Phase Diagram of Slot-Die Printed TiO2 Films Based on Sol-Gel Synthesis
Show others...
2019 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 12, article id 1900558Article in journal (Refereed) Published
Abstract [en]

Mesoporous titania films with tailored nanostructures are fabricated via slot-die printing, which is a simple and cost-effective thin-film deposition technique with the possibility of a large-scale manufacturing. Based on this technique, which is favorable in industry, TiO2 films possess the similar advantage with polymer semiconducting devices like ease of large-scale production. The titania morphologies, including foam-like nanostructures, nanowire aggregates, collapsed vesicles and nanogranules, are achieved via a so-called block-copolymer-assisted sol-gel synthesis. By adjusting the weight fraction of reactants, the ternary morphology phase diagram of the printed titania films is probed after template removal. The surface and inner morphology evolutions are explored with scanning electron microscopy and grazing incidence small-angle X-ray scattering, respectively. Special focus is set on foam-like titania nanostructures as they are of especial interest for, e.g., solar cell applications. At a low weight fraction of the titania precursor titanium(IV)isopropoxide (TTIP), foam-like titania films are achieved, which exhibit a high uniformity and possess large pore sizes. The anatase phase of the highly crystalline titania films is verified with X-ray diffraction and transmission electron microscopy.

Place, publisher, year, edition, pages
WILEY, 2019
Keywords
crystallinity, GISAXS, morphology phase diagram, printing, TiO2 films
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-256285 (URN)10.1002/admi.201900558 (DOI)000477979500004 ()2-s2.0-85065237302 (Scopus ID)
Note

QC 20191105

Available from: 2019-11-05 Created: 2019-11-05 Last updated: 2019-11-05Bibliographically approved
Brett, C., Mittal, N., Ohm, W., Söderberg, D. & Roth, S. V. (2018). In situ self-assembly study in bio-based thin films. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>In situ self-assembly study in bio-based thin films
Show others...
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-232279 (URN)000435539906263 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, LA
Note

QC 20180718

Available from: 2018-07-18 Created: 2018-07-18 Last updated: 2018-07-18Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5789-6299

Search in DiVA

Show all publications