Open this publication in new window or tab >>Show others...
2021 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 11, no 45, p. 27868-27879Article in journal (Refereed) Published
Abstract [en]
Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure-function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11-20 of the protein beta-lactoglobulin (beta-LG(11-20)), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of C-13 and N-15 resonances in the solid-state NMR spectra for the beta-LG(11-20) fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the beta-LG(11-20) fibrils were probed using NMR experiments of the peptide with C-13- and N-15-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel beta-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel beta-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible.
Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2021
National Category
Physical Chemistry Biochemistry Molecular Biology
Identifiers
urn:nbn:se:kth:diva-302632 (URN)10.1039/d1ra03575d (DOI)000694655300013 ()35480736 (PubMedID)2-s2.0-85114733485 (Scopus ID)
Note
QC 20230516
2021-10-042021-10-042025-02-20Bibliographically approved