kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 17) Show all publications
Sariyar, S., Sountoulidis, A., Hansen, J. N., Marco Salas, S., Mardamshina, M., Martinez Casals, A., . . . Ayoglu, B. (2024). High-parametric protein maps reveal the spatial organization in early-developing human lung. Nature Communications, 15(1), Article ID 9381.
Open this publication in new window or tab >>High-parametric protein maps reveal the spatial organization in early-developing human lung
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 9381Article in journal (Refereed) Published
Abstract [en]

The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:kth:diva-356315 (URN)10.1038/s41467-024-53752-x (DOI)001346144300041 ()39477961 (PubMedID)2-s2.0-85208166586 (Scopus ID)
Note

QC 20250212

Available from: 2024-11-13 Created: 2024-11-13 Last updated: 2025-02-12Bibliographically approved
Masarapu, Y., Cekanaviciute, E., Andrusivova, Z., Westholm, J. O., Björklund, Å., Fallegger, R., . . . Giacomello, S. (2024). Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice. Nature Communications, 15(1), Article ID 4778.
Open this publication in new window or tab >>Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 4778Article in journal (Refereed) Published
Abstract [en]

Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Neurosciences
Identifiers
urn:nbn:se:kth:diva-348766 (URN)10.1038/s41467-024-48916-8 (DOI)001245213500033 ()38862479 (PubMedID)2-s2.0-85195888030 (Scopus ID)
Note

QC 20240628

Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-08-20Bibliographically approved
Sountoulidis, A., Marco Salas, S., Braun, E., Avenel, C., Bergenstråhle, J., Theelke, J., . . . Samakovlis, C. (2023). A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nature Cell Biology, 25, 351-365
Open this publication in new window or tab >>A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung
Show others...
2023 (English)In: Nature Cell Biology, ISSN 1465-7392, E-ISSN 1476-4679, Vol. 25, p. 351-365Article in journal (Refereed) Published
Abstract [en]

Sountoulidis et al. provide a spatial gene expression atlas of human embryonic lung during the first trimester of gestation and identify 83 cell identities corresponding to stable cell types or transitional states. The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:kth:diva-328095 (URN)10.1038/s41556-022-01064-x (DOI)000916842700001 ()36646791 (PubMedID)2-s2.0-85146289982 (Scopus ID)
Note

QC 20231122

Available from: 2023-06-02 Created: 2023-06-02 Last updated: 2025-03-21Bibliographically approved
Braun, E., Danan-Gotthold, M., Borm, L. E., Lee, K. W., Vinsland, E., Lönnerberg, P., . . . Linnarsson, S. (2023). Comprehensive cell atlas of the first-trimester developing human brain. Science, 382(6667), 172-+, Article ID eadf1226.
Open this publication in new window or tab >>Comprehensive cell atlas of the first-trimester developing human brain
Show others...
2023 (English)In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 382, no 6667, p. 172-+, article id eadf1226Article in journal (Refereed) Published
Abstract [en]

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre–oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.

Place, publisher, year, edition, pages
American Association for the Advancement of Science (AAAS), 2023
National Category
Developmental Biology
Identifiers
urn:nbn:se:kth:diva-341832 (URN)10.1126/science.adf1226 (DOI)001112161200002 ()37824650 (PubMedID)2-s2.0-85174249467 (Scopus ID)
Note

QC 20240103

Available from: 2024-01-03 Created: 2024-01-03 Last updated: 2024-01-10Bibliographically approved
Andrusivova, Z. (2023). Development and application of spatial transcriptomics methods. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Development and application of spatial transcriptomics methods
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transcriptomics is one of the pivotal fields in molecular biology, enabling comprehensive analysis of gene expression patterns. Recent advancements in the biotechnology field have transformed the transcriptomics research, providing insights into the complexity of cellular processes in a greater detail. However, conventional transcriptomics methods such as bulk RNA sequencing or single-cell RNA sequencing rely on tissue dissociation and therefore lack spatial information, which limits our understanding of gene expression patterns within the tissue structures. The development of spatially resolved transcriptomics methods has revolutionized the study of transcriptomes, enabling analysis of gene expression patterns in the spatial context. The wide range of available transcriptomics technologies offer various levels of resolution and throughput, and combination of multiple techniques can be beneficial for studying biological systems and gain deeper understanding of their molecular processes. In this thesis, particular emphasis is given to the Visium spatial gene expression technology, which has gain widespread popularity in the research community over the recent years. 

In the article I, we expand the application of the Visium platform to fresh-frozen samples of lower RNA quality or otherwise challenging characteristics. To achieve this, we introduce specific modifications to the commercially available protocol and test its effectiveness across different tissue types of varying RNA quality, including pediatric brain tumors, human small intestine, and mouse bone and cartilage. By conducting comparative analysis, we demonstrate that the new protocol outperforms the standard Visium protocol when working with samples of moderate and lower RNA quality.

Article II introduces a novel method that enhances the resolution of the Visium gene expression method through tissue expansion. We showcase the implementation of this new protocol on two regions of mouse brain, olfactory bulb and hippocampus. We demonstrate the ability of this approach to study smaller tissue structures that were previously beyond the resolution capabilities of the Visium platform.

In the article III and IV, we demonstrate the practical application of the Visium approach and its combination with other methodologies in the field of developmental biology. We show how utilizing spatial transcriptomics methods help elucidate the spatial organization of cell types and cell states during organogenesis in the developing human spinal cord (article III) and developing lung tissue (article IV). By deploying single-cell RNA sequencing and spatial methods, we described the spatiotemporal gene expression profiles of various cell types as well as shared and unique events occurring during the spinal cord development in humans and rodents (article III). Applying this multimodal approach to lung tissue (article IV) allowed us to characterize novel cell states emerging during lung development and provided valuable insights into the structural organization of developing lungs. These studies highlight the findings and observations that can be gained by combining spatially resolved transcriptomics with other laboratory techniques to shed light on the spatial dynamics of cellular processes during organ development.

Abstract [sv]

Transkriptomik är ett centralt område inom molekylärbiologi som möjliggör övergripande analys av genuttrycksmönster. De senaste framstegen inom bioteknik har revolutionerat transkriptomikforskningen vilket gett nya insikter i cellulära processers komplexitet på en mer detaljerad nivå. Konventionella transkriptomikmetoder som bulk-RNA-sekvensering eller single-cell RNA-sekvensering förlitar sig dock på dissociering av vävnad och saknar därför spatial information, vilket begränsar vår förståelse av genuttrycksmönster inom vävnaden. Utvecklingen av spatialt upplöst transkriptomik har revolutionerat studerandet av transkriptom genom att möjliggöra analys av genuttrycksmönster i sin spatiala kontext. Det breda utbudet av tillgängliga transkriptomiktekniker erbjuder olika nivåer av upplösning och kapacitet, och kombinationen av flera tekniker kan vara fördelaktig för studier av biologiska system för att uppnå en djupare förståelse av deras molekylära processer. I den här avhandlingen läggs särskild vikt på Visium-teknologin för spatialt genuttryck, som har blivit mycket populär inom forskarvärlden under de senaste åren.

I Artikel I expanderar vi tillämpningen av Visium-plattformen till färskfrusna prover med lägre RNA-kvalitet eller andra utmanande egenskaper. För att uppnå detta introducerar vi specifika modifieringar till den kommersiellt tillgängliga metoden och testar dess effektivitet på olika vävnadstyper med varierande RNA-kvalitet, inklusive barnhjärntumörer, mänsklig tunntarm och musbens- och broskvävnad. Våra jämförelse analyser visar att den nya metoden överträffar standard Visium-protokollet för prover med måttlig eller lägre RNA-kvalitet.

Artikel II introducerar en ny metod som förbättrar upplösningen av Visium-metoden genom utvidgning av vävnaden. Vi applicerar detta nya protokoll på två områden i mushjärnan, specifikt luktloben och hippocampus och demonstrerar dess förmågan att studera mindre vävnadsstrukturer som tidigare låg utanför Visium-plattformens upplösningsförmåga.

I Artikel III och IV demonstrerar vi den praktiska tillämpningen av Visium-metoden och dess kombination med andra metoder inom utvecklingsbiologi. Vi visar på hur användningen av spatiala transkriptomikmetoder hjälper till att belysa den rumsliga organisationen av celltyper och celltillstånd under organogenesen i den mänskliga ryggmärgs utvecklingen (artikel III) och i lungvävnads utvecklingen (artikel IV). Genom att använda single-cell RNA-sekvensering och spatiala metoder beskrev vi de spatiala genuttrycksmönstren hos olika celltyper samt delade och unika händelser som sker under ryggmärgsutvecklingen hos människor jämfört med gnagare (artikel III). Genom att tillämpa denna multimodala metod på lungvävnad (artikel IV) karaktäriserar vi även nya celltillstånd som uppstår under lungutvecklingen och erhåller värdefulla insikter i den strukturella organisationen av utvecklade lungor. Dessa studier framhäver de resultat och iakttagelser som kan erhållas genom att kombinera spatialt upplösta transkriptomik med andra laboratorietekniker för att klargöra den spatiala dynamiken hos cellulära processer under organs utveckling.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 39
Series
TRITA-CBH-FOU ; 2023:34
Keywords
RNA, Spatial Transcriptomics, RNA sequencing
National Category
Biological Sciences
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-334467 (URN)978-91-8040-648-2 (ISBN)
Public defence
2023-09-29, Air&Fire, Tomtebodavägen 23, 17165, via Zoom: https://kth-se.zoom.us/w/65460357449?tk=AcMUAEl9A6pH48yexKbBI7fYY6VCqV2mTsHWAXFg32Q.DQQAAAAPPb3JSRZNNHpIZ1VESFI0ZV9XNDQ0LWVCNVB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-08-21

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-09-26Bibliographically approved
Fan, Y., Andrusivova, Z., Wu, Y., Chai, C., Larsson, L., He, M., . . . Wang, B. (2023). Expansion spatial transcriptomics. Nature Methods, 20(8), 1179-1182
Open this publication in new window or tab >>Expansion spatial transcriptomics
Show others...
2023 (English)In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 20, no 8, p. 1179-1182Article in journal (Refereed) Published
Abstract [en]

Capture array-based spatial transcriptomics methods have been widely used to resolve gene expression in tissues; however, their spatial resolution is limited by the density of the array. Here we present expansion spatial transcriptomics to overcome this limitation by clearing and expanding tissue prior to capturing the entire polyadenylated transcriptome with an enhanced protocol. This approach enables us to achieve higher spatial resolution while retaining high library quality, which we demonstrate using mouse brain samples. 

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Biological Sciences
Identifiers
urn:nbn:se:kth:diva-334457 (URN)10.1038/s41592-023-01911-1 (DOI)001014506200001 ()37349575 (PubMedID)2-s2.0-85163041396 (Scopus ID)
Note

QC 20230824

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2024-03-15Bibliographically approved
Li, X., Andrusivova, Z., Czarnewski, P., Langseth, C. M., Andersson, A., Liu, Y., . . . Sundstrom, E. (2023). Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nature Neuroscience, 26(5), 891-901
Open this publication in new window or tab >>Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin
Show others...
2023 (English)In: Nature Neuroscience, ISSN 1097-6256, E-ISSN 1546-1726, Vol. 26, no 5, p. 891-901Article in journal (Refereed) Published
Abstract [en]

The authors created a comprehensive developmental cell atlas for spatiotemporal gene expression of the human spinal cord, revealed species-specific regulation during development and used the atlas to infer novel markers for pediatric ependymomas. The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Medical Genetics and Genomics
Identifiers
urn:nbn:se:kth:diva-328100 (URN)10.1038/s41593-023-01312-9 (DOI)000975560000004 ()37095395 (PubMedID)2-s2.0-85153355240 (Scopus ID)
Note

QC 20230602

Available from: 2023-06-02 Created: 2023-06-02 Last updated: 2025-02-10Bibliographically approved
Mirzazadeh, R., Andrusivova, Z., Larsson, L., Newton, P. T., Galicia, L. A., Abalo, X. M., . . . Lundeberg, J. (2023). Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples. Nature Communications, 14(1)
Open this publication in new window or tab >>Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples
Show others...
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1Article in journal (Refereed) Published
Abstract [en]

Spatially resolved transcriptomics has enabled precise genome-wide mRNA expression profiling within tissue sections. The performance of methods targeting the polyA tails of mRNA relies on the availability of specimens with high RNA quality. Moreover, the high cost of currently available spatial resolved transcriptomics assays requires a careful sample screening process to increase the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a workflow designed to improve mRNA recovery from fresh frozen specimens with moderate to low RNA quality. First, we provide a benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA quality samples represented by mouse brain and prostate cancer samples. Then, we test the RRST protocol on tissue sections collected from five challenging tissue types, including human lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections and demonstrate that RRST is a versatile, powerful, and reproducible protocol for fresh frozen specimens of different qualities and origins. 

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:kth:diva-326141 (URN)10.1038/s41467-023-36071-5 (DOI)001026236800009 ()36720873 (PubMedID)2-s2.0-85147171092 (Scopus ID)
Note

QC 20230426

Available from: 2023-04-25 Created: 2023-04-25 Last updated: 2025-02-20Bibliographically approved
Overbey, E. G., Das, S., Cope, H., Madrigal, P., Andrusivova, Z., Frapard, S., . . . Giacomello, S. (2022). Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. CELL REPORTS METHODS, 2(11), Article ID 100325.
Open this publication in new window or tab >>Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight
Show others...
2022 (English)In: CELL REPORTS METHODS, ISSN 2667-2375, Vol. 2, no 11, article id 100325Article, review/survey (Refereed) Published
Abstract [en]

Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.

Place, publisher, year, edition, pages
Elsevier BV, 2022
National Category
Cell and Molecular Biology Bioinformatics (Computational Biology)
Identifiers
urn:nbn:se:kth:diva-323639 (URN)10.1016/j.crmeth.2022.100325 (DOI)000908273900006 ()36452864 (PubMedID)2-s2.0-85142203342 (Scopus ID)
Note

QC 20230215

Available from: 2023-02-08 Created: 2023-02-08 Last updated: 2023-02-15Bibliographically approved
Larsson, L., Bergenstråhle, L., He, M., Andrusivova, Z. & Lundeberg, J. (2022). Spatial transcriptomics. Cell, 185(15), 2840-2840.e1, Article ID 2840.e1.
Open this publication in new window or tab >>Spatial transcriptomics
Show others...
2022 (English)In: Cell, ISSN 0092-8674, E-ISSN 1097-4172, Vol. 185, no 15, p. 2840-2840.e1, article id 2840.e1Article in journal, Editorial material (Other academic) Published
Abstract [en]

Spatially resolved transcriptomics methodologies using RNA sequencing principles have and will continue to contribute to decode the molecular landscape of tissues. Linking quantitative sequencing data with tissue morphology empowers profiling of cellular morphology and transcription over time and space in health and disease. To view this SnapShot, open or download the PDF.

Place, publisher, year, edition, pages
Elsevier BV, 2022
National Category
Genetics and Genomics
Identifiers
urn:nbn:se:kth:diva-317196 (URN)10.1016/j.cell.2022.06.002 (DOI)000844140300005 ()35868280 (PubMedID)2-s2.0-85134829188 (Scopus ID)
Note

QC 20220912

Available from: 2022-09-12 Created: 2022-09-12 Last updated: 2025-02-07Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-4350-2524

Search in DiVA

Show all publications