Change search
Link to record
Permanent link

Direct link
BETA
Publications (8 of 8) Show all publications
de Carvalho, D. M., Moser, C., Lindström, M. & Sevastyanova, O. (2019). Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Industrial crops and products (Print), 127, 203-211
Open this publication in new window or tab >>Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties
2019 (English)In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 127, p. 203-211Article in journal (Refereed) Published
Abstract [en]

This paper investigated the impact of the amounts of lignin and hemicelluloses on cellulose nanofibers (CNFs). Birch and spruce wood were used to prepare holocellulose and cellulose samples by classical methods. To better assess the effect of the chemical composition on the CNF performance and simplify the process for CNF preparation, no surface derivatization method was applied for CNF preparation. Increased amounts of hemicelluloses, especially mannans, improved the defibration process, the stability of the CNFs and the mechanical properties, whereas the residual lignin content had no significant effect on these factors. On the other hand, high lignin content turned spruce nanopapers yellowish and, together with hemicelluloses, reduced the strain-at-break values. Finally, when no surface derivatization was applied to holocellulose and cellulose samples before defibration, the controlled preservation of residual lignin and hemicelluloses on the CNFs indicate to be crucial for the process. This simplified method of CNF preparation presents great potential for forest-based industries as a way to use forestry waste (e.g., branches, stumps, and sawdust) to produce CNFs and, consequently, diversify the product range and reach new markets.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Birch wood, Spruce wood, Cellulose nanofiber (CNF), Holocellulose CNF, Nanopaper, Residual cell wall components
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-238861 (URN)10.1016/j.indcrop.2018.10.052 (DOI)000452565200025 ()2-s2.0-85055735243 (Scopus ID)
Note

QC 20181120

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2019-01-04Bibliographically approved
de Carvalho, D. M., Moser, C., Lindström, M. & Sevastyanova, O. (2019). Preparation of cellulosic samples with varied content of residual lignin and hemicelluloses: Impact on nanofibrillation process and nanopaper properties. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Preparation of cellulosic samples with varied content of residual lignin and hemicelluloses: Impact on nanofibrillation process and nanopaper properties
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257611 (URN)000478860502474 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190918

Available from: 2019-09-18 Created: 2019-09-18 Last updated: 2019-11-06Bibliographically approved
Moser, C., Henriksson, G. & Lindström, M. (2019). Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers. BioResources, 14(1), 2269-2276
Open this publication in new window or tab >>Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers
2019 (English)In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, no 1, p. 2269-2276Article in journal (Refereed) Published
Abstract [en]

The exact mechanism behind the disintegration of chemical pulp fiber into cellulose nanofibers is poorly understood. In this study, samples were subjected to various homogenization cycles, indicating that the mechanism is a stepwise process. In the earlier stages of the mechanical process, a large amount of macrofibrils were created as the larger structures disappeared. Upon mechanical treatment these macrofibrils disappeared despite the increasing yield of cellulose nanofibers. The proposed model expands the understanding of the disintegration pathway and may provide additional insight as to how wood cells are converted into microfibrils.

Place, publisher, year, edition, pages
North Carolina State University, 2019
Keywords
Cellulose, Hierarchy, Macrofibrils, Nanofibers
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-244204 (URN)10.15376/biores.14.1.2269-2276 (DOI)000459494400155 ()2-s2.0-85061333292 (Scopus ID)
Note

QC 20190218

Available from: 2019-02-18 Created: 2019-02-18 Last updated: 2019-03-15Bibliographically approved
Moser, C., Henriksson, G. & Lindström, M. (2018). Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nordic Pulp & Paper Research Journal
Open this publication in new window or tab >>Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669Article in journal (Refereed) Epub ahead of print
Abstract [en]

To investigate the dispersibility of dried cellulose nanofibers (CNFs), various additions (glycerol, octanol, glycol, and sodium perchlorate) were added to CNFs prior to drying. Glycerol was the only species to show any significant effect on re-dispersibility. The sedimentation was slower, and the transmittance of the solution was comparable to that of its undried counterpart. Increasing the amount of glycerol showed a clear trend with regard to dispersibility. The mechanical properties of films were maintained for samples that were dried and redispersed in the presence of glycerol.

Place, publisher, year, edition, pages
Berlin: De Gruyter Open, 2018
Keywords
cellulose nanofibers, CNF, drying, glycerol, hornification, MFC, redispersion
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-238860 (URN)10.1515/npprj-2018-0054 (DOI)000451437900008 ()2-s2.0-85056550081 (Scopus ID)
Note

QC 20181120

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2018-12-21Bibliographically approved
Moser, C. (2018). Manufacturing and Characterization of Cellulose Nanofibers. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Manufacturing and Characterization of Cellulose Nanofibers
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The usage of wood has been a dominant driving force during the evolution of the human species. It allowed us to cook food, build tools, put roofs over our head and explore the world. The fibers making up the tree has been the most important way to store and transmit knowledge in the form of paper for centuries. It may not be considered as the most interesting or hi-tech of fields, although, nothing could be further from the truth. One of society's most significant issue is how to live sustainably, which is coincidentally exactly what trees can solve. We can live in tall buildings made from wood, locking up vast amounts of carbon dioxide - we can replace many of the plastics we use today with sustainable alternative from the components making up the tree - we could even make clothes from our trees and stop being reliant on the untenable cotton production - only our imagination is holding us back from what can be made from trees.

Cellulose is the structural component in trees, the molecule arranges itself in a complex hierarchical structure that forms the wood-cells, or fibers. Breaking down this hierarchical structure down to its smallest structural units leaves us with tiny fibers, no longer than a few micrometers and with a width of merely four nanometers. These are cellulose nanofibers, and this work has aimed to understand how and what it takes to liberate these fine fibers from the larger fiber that they make up. Two main pathways exist to liberate the nanofibers, either chemically by introducing negatively charged groups on the surface of the cellulose, making the fibrils repel each other, or mechanically, simply by intense processing of the fibers. However, these processes are associated with certain flaws in that (i) vast amount of energy is required unless the fibers are pretreated, (ii) disintegration is performed in instruments that do not scale well, (iii) disintegration is carried out at a low concentration of fibers, typically below 5%. Additionally, what comes out of a process is difficult to characterize in terms of quality due to an inherent inhomogeneity and the small size of the nanofibers.

These issues in combination with a greater understanding of the processes are the foundation of this thesis.

Decreased energy consumption and scalability was explored via the steam explosion concept Nanopulp. In order to avoid issues associated with the low concentration, a method was developed for drying cellulose nanofibers to a paste without causing hornification using glycerol. A variety of cellulose nanofibers from different sources were prepared and characterization techniques were compared and expanded upon, including the development of a method for better describing the surface area of cellulose nanofibers. Finally, an environmentally friendly composite was made using cheap and available resources in combination with cellulose nanofibers.

Abstract [sv]

Användningen av träd har varit en viktig del under människans evolution. Dessa har tillåtit oss tillaga mat, tillverka verktyg, bygga hus och utforskavärlden. Fibrerna som ett träd är uppbyggt av har i form av papper varitdet viktigaste sättet att lagra och överföra kunnskap under århundranden. Detta fält betraktas ofta som ganska tråkigt och inte så hi-tech, vilket är långt ifrån sanningen. Ett av samhällets största problemen idag är hur manska leva på ett hållbart sätt, vilket är exakt vad vi kan lösa med hjälp avträd. Vi kan bygga höga byggnader av trä att bo i för att binda upp storamängder koldioxid. Vi kan ersätta många av de plaster vi idag användermed hållbara alternativ från de komponenter som utgör träd. Vi kan till och med göra kläder från våra träd för att sluta vara beroende av den ohållbara bomullsproduktionen - bara fantasin sätter gränser för vad som kan göras frånträd. Cellulosa är den huvudsakligen strukturella komponenten i trä, molekylen ordnar sig i en komplex hierarkisk struktur som bildar träcellerna eller fibrerna. Genom att bryta ner denna hierarkiska strukturen till dess minsta strukturella enhet, småfibrer, som bara är några mikrometer långa och meden bredd av ynka fyra nanometer. Dessa är cellulosa nanofibrer och syftetmed detta arbete har varit att förstå hur och vad som krävs för att frigöra dessa småfibrer från den större fiber som de utgör. Det finns principiellt två vägar att gå för att sönderdela en fiber till nanofibrer, antingen kemiskt genom introduktion av negativt laddade grupper på cellulosans yta, vilket gör att nanofibrerna stöter ifrån varandra, eller mekaniskt, genom intensivt mekanisk bearbetning av fibrerna. Dessa processer är emellertid förknippade med vissa brister i och med att (i) stor mängd energi krävs om inte fibrerna förbehandlas, (ii) delaminering utförs i instrument som inte skalar väl industriellt, (iii) delaminering utförs vid en låg koncentration av fibrer, typiskt under 5%. Dessutom är det svårt att karakterisera det som kommer ut med hänsyn till kvalité på grund av inhomogeniteten och den lilla storleken hos nanofibrerna. Dessa problem i kombination med en större förståelse av processerna är ämnet för denna avhandling. 

Förmindskad energikonsumption och uppskalning undersöktes genom ett ångexplosionskonceptet, Nanopulping. För att undvika problemen associerade med den låga koncentrationen utvecklades en metod för att torka cellulosa nanofibrer till en pasta utan att orsaka hornifiering med hjälp av glycerol. En mängd cellulosa nanofibrer med olika utgångsmaterial framställdes och karaktäriseringstekniker jämfördes och utvecklades, denna utveckling innefattade bland annat en metod för att bättre beskriva ytan av cellulosa nanofibrer. Slutligen tillverkades en miljövänlig komposit från billiga och tillgängliga resurser i kombination med cellulosa nanofibrer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 70
Series
TRITA-CBH-FOU ; 2019:1
Keywords
Cellulose, Nanofibers, Characterization, Homogenization, Endoglucanase, TEMPO, Specific surface area, Atomic force microscopy, Cellulosa, Nanofibrer, Karakterisering, Homogenisering, Endoglukanas, TEMPO, Specifik ytarea, Atomkraftmikroskopi
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-240581 (URN)978-91-7873-079-7 (ISBN)
Public defence
2019-01-25, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Note

QC 20181223

Available from: 2018-12-23 Created: 2018-12-20 Last updated: 2019-01-08Bibliographically approved
Moser, C., Backlund, H., Drenth, L., Henriksson, G. & Lindström, M. (2018). Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers. Nordic Pulp & Paper Research Journal, 33(2), 186-193
Open this publication in new window or tab >>Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers
Show others...
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 2, p. 186-193Article in journal (Refereed) Published
Abstract [en]

In this paper, we explore xyloglucan adsorption to cellulose nanofibers as a method for the evaluation of their quality (i. e., the degree of disintegration) and the accessible surface area in the wet state and at low ionic strength. This method was shown to be capable of estimating the surface areas of 14 different cellulose nanofiber qualities from both hardwood and softwood with different pretreatments, including enzymatic hydrolysis using a monocomponent endoglucanase, TEMPO-mediated oxidation, and carboxymethylation. The cellulose surface measured using this method showed a correlation with the degree of disintegration expressed as transmittance for different concentrations of xyloglucan.

Place, publisher, year, edition, pages
Berlin: De Gruyter Open, 2018
Keywords
cellulose, nanofibers, xyloglucan, specific surface area
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-238857 (URN)10.1515/npprj-2018-3034 (DOI)000450922400003 ()2-s2.0-85049499781 (Scopus ID)
Note

QC 20181120

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2019-10-09Bibliographically approved
Moser, C., Backlund, H., Lindström, M. & Henriksson, G. (2018). Xyloglucan for estimating the surface area of cellulose fibers. Nordic Pulp & Paper Research Journal, 33(2), 194-199
Open this publication in new window or tab >>Xyloglucan for estimating the surface area of cellulose fibers
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 2, p. 194-199Article in journal (Refereed) Published
Abstract [en]

The hemicellulose xyloglucan can be utilized to measure exposed cellulose surfaces for pulp fibers. This was shown by correlating a refining series with the adsorbed amount of xyloglucan, and by swelling cellulose fibers to various degrees by increasing the charge density. The method is specific to cellulose and could be used to quantify refining or to determine hornification.

Place, publisher, year, edition, pages
Berlin: De Gruyter Open, 2018
Keywords
cellulose, fibers, specific surface area, softwood, TEMPO, xyloglucan
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-238858 (URN)10.1515/npprj-2018-3035 (DOI)2-s2.0-85049131618 (Scopus ID)
Note

QC 20181120

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2019-05-02Bibliographically approved
Zhao, Y., Moser, C., Lindström, M., Henriksson, G. & Li, J. (2017). Film formation and performance of different nanocelluloses obtained from different cellulose sources after different preparation processes. Paper presented at 253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA. Abstracts of Papers of the American Chemical Society, 253
Open this publication in new window or tab >>Film formation and performance of different nanocelluloses obtained from different cellulose sources after different preparation processes
Show others...
2017 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2017
National Category
Organic Chemistry
Identifiers
urn:nbn:se:kth:diva-242597 (URN)000430568503484 ()
Conference
253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, APR 02-06, 2017, San Francisco, CA
Note

QC 20190226

Available from: 2019-02-26 Created: 2019-02-26 Last updated: 2019-08-20Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8125-7734

Search in DiVA

Show all publications