Change search
Link to record
Permanent link

Direct link
BETA
Xie, Ruiwen
Publications (4 of 4) Show all publications
Linder, D., Hou, Z., Xie, R., Hedström, P., Ström, V., Holmström, E. & Borgenstam, A. (2019). A comparative study of microstructure and magnetic properties of a Ni–Fe cemented carbide: Influence of carbon content. International Journal of Refractory Metals and Hard Materials, 80, 181-187
Open this publication in new window or tab >>A comparative study of microstructure and magnetic properties of a Ni–Fe cemented carbide: Influence of carbon content
Show others...
2019 (English)In: International Journal of Refractory Metals and Hard Materials, ISSN 0263-4368, Vol. 80, p. 181-187Article in journal (Refereed) Published
Abstract [en]

Due to the renewed interest in alternative binders for cemented carbides it is important to understand how the binder composition influences not only mechanical properties but also the microstructure and related measurements for quality control. Microstructure and chemical composition of WC-Co is often evaluated by magnetic measurements. However, when the binder composition deviates significantly from conventional Co-based binders it should not be assumed that the standard measurements can be used to directly evaluate the same parameters. In this paper we investigate the influence of relative C-content on the microstructure and magnetic properties of an alternative binder cemented carbide. It is shown that the saturation magnetization is related to the relative C-content and the magnetic coercivity is related to the microstructure, more specifically to the binder phase distribution, but could not be directly linked to the carbide grain size in the same manner as for standard WC-Co. Furthermore, a direct correlation between Curie temperature and saturation magnetization is observed for this system which means that the Curie temperature potentially could be used for calibration of empirical relations or as a method to accurately determine the binder volume fraction.

Place, publisher, year, edition, pages
Elsevier Ltd, 2019
Keywords
Alternative binder, Cemented carbide, Cermet, Cobalt substitution, Magnetic properties, Metal-matrix composite, Microstructure
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-246465 (URN)10.1016/j.ijrmhm.2019.01.014 (DOI)000460992100018 ()2-s2.0-85060087544 (Scopus ID)
Note

QC 20190326

Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2019-08-27Bibliographically approved
Xie, R., Li, W., Lu, S., Song, Y. & Vitos, L. (2019). Generalized stacking fault energy of carbon-alloyed paramagnetic gamma-Fe. Journal of Physics: Condensed Matter, 31(6), Article ID 065703.
Open this publication in new window or tab >>Generalized stacking fault energy of carbon-alloyed paramagnetic gamma-Fe
Show others...
2019 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 31, no 6, article id 065703Article in journal (Refereed) Published
Abstract [en]

Generalized stacking fault energy (GSFE) is an important parameter for understanding the underlying physics governing the deformation mechanisms in face-centred cubic (fcc) materials. In the present work, we study the long-standing question regarding the influence of C on the GSFE in austenitic steels at paramagnetic state. We calculate the GSFE in both gamma-Fe and Fe-C alloys using the exact muffin-tin orbitals method and the Vienna Ab initio Simulation Package. Our results show that the GSFE is increased by the presence of interstitial C, and the universal scaling law is used to verify the accuracy of the obtained stacking fault energies. The C-driven change of the GSFE is discussed considering the magnetic contributions. The effective energy barriers for stacking fault, twinning and slip formation are employed to disclose the C effect on the deformation modes, and we also demonstrate that the magnetic structures as a function of volume explain the effect of paramagnetism on the C-driven changes of the stacking fault energies as compared to the hypothetical non-magnetic case.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
C-alloyed gamma-Fe, GSFE, paramagnetism, ab initio
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-241183 (URN)10.1088/1361-648X/aaf2fa (DOI)000454553700001 ()30524044 (PubMedID)2-s2.0-85059403568 (Scopus ID)
Note

QC 20190121

Available from: 2019-01-21 Created: 2019-01-21 Last updated: 2019-03-04Bibliographically approved
Xie, R., Lizárraga, R., Linder, D., Hou, Z., Ström, V., Lattemann, M., . . . Vitos, L. (2019). Quantum mechanics basis of quality control in hard metals. Acta Materialia, 169, 1-8
Open this publication in new window or tab >>Quantum mechanics basis of quality control in hard metals
Show others...
2019 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 169, p. 1-8Article in journal (Refereed) Published
Abstract [en]

Non-destructive and reliable quality control methods are a key aspect to designing, developing and manufacturing new materials for industrial applications and new technologies. The measurement of the magnetic saturation is one of such methods and it is conventionally employed in the cemented carbides industry. We present a general quantum mechanics based relation between the magnetic saturation and the components of the binder phase of cemented carbides, which can be directly employed as a quality control. To illustrate our results, we calculate the magnetic saturation of a binder phase, 85Ni15Fe binary alloy, using ab-initio methods and compare the theoretical predictions to the magnetic saturation measurements. We also analyse interface and segregation effects on the magnetic saturation by studying the electronic structure of the binder phase. The excellent agreement between calculations and measurements demonstrates the applicability of our method to any binder phase. Since the magnetic saturation is employed to ensure the quality of cemented carbides, the present method allows us to explore new materials for alternative binder phases efficiently.

Place, publisher, year, edition, pages
Acta Materialia Inc, 2019
Keywords
Ab-initio calculations, Binder phase, Hard metal, Magnetic saturation
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-246425 (URN)10.1016/j.actamat.2019.02.036 (DOI)000465365300001 ()2-s2.0-85062451846 (Scopus ID)
Note

QC 20190401

Available from: 2019-04-01 Created: 2019-04-01 Last updated: 2019-10-24Bibliographically approved
Lattemann, M., Xie, R., Lizarraga, R., Vitos, L. & Holmström, E. (2019). Understanding Quality Control of Hard Metals in Industry - A Quantum Mechanics Approach. Advanced Theory and Simulations, 2(6), Article ID 1900035.
Open this publication in new window or tab >>Understanding Quality Control of Hard Metals in Industry - A Quantum Mechanics Approach
Show others...
2019 (English)In: Advanced Theory and Simulations, ISSN 2513-0390, Vol. 2, no 6, article id 1900035Article in journal (Refereed) Published
Abstract [en]

For many decades, the magnetic saturation of, for example, hard metals (HM) such as WC-Co-based cemented carbides, has been used as process and quality control in industry to ensure consistency of product properties. In an urge to replace cobalt as a binder phase, a demand on understanding the magnetic response as a function of composition on the atomic scale is growing. In this paper, a theoretical description of the measured weight-specific magnetic saturation of hard metals as a function of the tungsten weight fraction present in the cobalt binder phase, based on first-principle calculations, is established for standard WC-Co. The predicted magnetic saturation agrees well with the experimental one. Furthermore, it is proposed that the theoretical description can be extended to alternative and more complex binder phases which allows to transfer the production control to those hard metals.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2019
Keywords
ab initio calculations, alternative binder, Co substitution, hard metal, magnetic saturation
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-254083 (URN)10.1002/adts.201900035 (DOI)000470158200009 ()
Note

QC 20190625

Available from: 2019-06-25 Created: 2019-06-25 Last updated: 2019-06-25Bibliographically approved
Organisations

Search in DiVA

Show all publications