Change search
Link to record
Permanent link

Direct link
BETA
Remnestål, Julia
Publications (2 of 2) Show all publications
Andersson, A., Remnestål, J., Nellgård, B., Vunk, H., Kotol, D., Edfors, F., . . . Fredolini, C. (2019). Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer's disease. Clinica Chimica Acta, 494, 79-93
Open this publication in new window or tab >>Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer's disease
Show others...
2019 (English)In: Clinica Chimica Acta, ISSN 0009-8981, E-ISSN 1873-3492, Vol. 494, p. 79-93Article in journal (Refereed) Published
Abstract [en]

Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders. In this study, we selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. We examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA. Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results (r > 0.7) and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, we demonstrate the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.

Place, publisher, year, edition, pages
Elsevier B.V., 2019
Keywords
AD, Alzheimer's disease, Biomarkers, Cerebrospinal fluid, Parallel reaction monitoring (PRM), Suspension bead array (SBA), alpha 1 aantitrypsin, alpha 1 antichymotrypsin, apolipoprotein, biological marker, cathepsin D, cholecystokinin, creatine kinase B type, dickkopf related protein 3, fibrinogen alpha, fructose bisphosphate aldolase C, glucose regulated protein 94, inter alpha trypsin inhibitor heavy chain H1, leucine rich alpha 2 glycoprotein, neurobeachin, neurofilament medium polypeptide, neuromodulin, plasminogen, prosaposin, protein S100B, SPARC like protein 1, unclassified drug, vascular cell adhesion protein 1, adult, aged, Alzheimer disease, Article, clinical article, cohort analysis, controlled study, correlational study, disease course, female, human, male, mass spectrometry, middle aged, mild cognitive impairment, multiple reaction monitoring, priority journal, protein blood level, protein cerebrospinal fluid level, protein microarray, suspension bead array, very elderly
National Category
Medical Biotechnology
Identifiers
urn:nbn:se:kth:diva-252444 (URN)10.1016/j.cca.2019.03.243 (DOI)000470950400013 ()2-s2.0-85063002689 (Scopus ID)
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2019-07-15Bibliographically approved
Khoonsari, P. E., Shevchenko, G., Herman, S., Remnestål, J., Giedraitis, V., Brundin, R., . . . Kultima, K. (2019). Improved Differential Diagnosis of Alzheimer's Disease by Integrating ELISA and Mass Spectrometry-Based Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 67(2), 639-651
Open this publication in new window or tab >>Improved Differential Diagnosis of Alzheimer's Disease by Integrating ELISA and Mass Spectrometry-Based Cerebrospinal Fluid Biomarkers
Show others...
2019 (English)In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 67, no 2, p. 639-651Article in journal (Refereed) Published
Abstract [en]

Background: Alzheimer's disease (AD) is diagnosed based on a clinical evaluation as well as analyses of classical biomarkers: A beta(42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF). Although the sensitivities and specificities of the classical biomarkers are fairly good for detection of AD, there is still a need to develop novel biochemical markers for early detection of AD. Objective: We explored if integration of novel proteins with classical biomarkers in CSF can better discriminate AD from non-AD subjects. Methods: We applied ELISA, mass spectrometry, and multivariate modeling to investigate classical biomarkers and the CSF proteome in subjects (n = 206) with 76 AD patients, 74 mild cognitive impairment (MCI) patients, 11 frontotemporal dementia (FTD) patients, and 45 non-dementia controls. The MCI patients were followed for 4-9 years and 21 of these converted to AD, whereas 53 remained stable. Results: By combining classical CSF biomarkers with twelve novel markers, the area of the ROC curves (AUROCS) of distinguishing AD and MCl/AD converters from non-AD were 93% and 96%, respectively. The FTDs and non-dementia controls were identified versus all other groups with AUROCS of 96% and 87%, respectively. Conclusions: Integration of new and classical CSF biomarkers in a model-based approach can improve the identification of AD, FTD, and non-dementia control subjects.

Place, publisher, year, edition, pages
IOS PRESS, 2019
Keywords
Alzheimer's disease, cerebrospinal fluid, ELISA, mass spectrometry, mild cognitive impairment, proteomics
National Category
Neurology
Identifiers
urn:nbn:se:kth:diva-244560 (URN)10.3233/JAD-180855 (DOI)000457779300016 ()30614806 (PubMedID)2-s2.0-85060607932 (Scopus ID)
Note

QC 20190312

Available from: 2019-03-12 Created: 2019-03-12 Last updated: 2019-03-12Bibliographically approved
Organisations

Search in DiVA

Show all publications