Change search
Link to record
Permanent link

Direct link
BETA
Yao, Jenevieve G.
Publications (1 of 1) Show all publications
Erdal, N. B., Yao, J. G. & Hakkarainen, M. (2019). Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability. Paper presented at Symposium on Rational Design of Multifunctional Renewable-Resourced Materials held during the ACS National Meeting, AUG 19-23, 2018, Boston, MA. Biomacromolecules, 20(2), 738-749
Open this publication in new window or tab >>Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability
2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 738-749Article in journal (Refereed) Published
Abstract [en]

Multifunctional three-dimensional (3D) scaffolds were targeted by surface grafting cellulose-derived nanographene oxide (nGO) on the surface of porous poly(epsilon-caprolactone) (PCL) scaffolds. nGO was derived from cellulose by microwave-assisted carbonization process and covalently grafted onto aminolyzed PCL scaffolds through an aqueous solution process. Fourier transform infrared spectroscopy and thermogravimetric analysis both verified the successful attachment of nGO and scanning electron microscopy depicted a homogeneous dispersion of nGO over the scaffold surface. Mechanical tests were performed and demonstrated a significant increase in compressive strength for the nGO grafted scaffolds. Grafting of nGO was also shown to induce mineralization with the formation of calcium phosphate precipitates on the surface of the scaffolds with the size increasing with higher nGO content. The potential of surface-grafted nGO as a nanocarrier of an antibiotic drug was also explored. The secondary interactions between nGO and ciprofloxacin, a broad-spectrum antibiotic used in the treatment of osteomyelitis, were optimized by controlling the solution pH. Ciprofloxacin was found to be adsorbed most strongly in its cationic form at pH 5, in which pi-pi electron donor-acceptor interactions predominate and the adsorbed drug content increased with increasing nGO amount. Further, the release kinetics of the drug were investigated during 8 days. In conclusion, the proposed simple fabrication process led to a scaffold with multifunctionality in the form of improved mechanical strength, ability to induce mineralization, as well as drug loading and delivery capability.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:kth:diva-245945 (URN)10.1021/acs.biomac.8b01421 (DOI)000458937200017 ()30360619 (PubMedID)2-s2.0-85056460762 (Scopus ID)
Conference
Symposium on Rational Design of Multifunctional Renewable-Resourced Materials held during the ACS National Meeting, AUG 19-23, 2018, Boston, MA
Note

QC 20190313

Available from: 2019-03-13 Created: 2019-03-13 Last updated: 2019-03-13Bibliographically approved
Organisations

Search in DiVA

Show all publications