Change search
Link to record
Permanent link

Direct link
BETA
Publications (2 of 2) Show all publications
Andrén, O. C. J., Ingverud, T., Hult, D., Håkansson, J., Bogestål, Y., Caous, J. S., . . . Malkoch, M. (2019). Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings. Advanced Healthcare Materials, 8(5)
Open this publication in new window or tab >>Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings
Show others...
2019 (English)In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 5Article in journal (Refereed) Published
Abstract [en]

Abstract A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged ?-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G? = 0.5?8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2019
Keywords
antibacterial, dendrimer, hydrogels, surgical-site infection
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-249169 (URN)10.1002/adhm.201801619 (DOI)000461575200014 ()2-s2.0-85061270456 (Scopus ID)
Note

QC 20190412

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-04-12Bibliographically approved
Erlandsson, J., Pettersson, T., Ingverud, T., Granberg, H., Larsson, P. A., Malkoch, M. & Wågberg, L. (2018). On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 6(40), 19371-19380
Open this publication in new window or tab >>On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels
Show others...
2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed) Published
Abstract [en]

The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018
Keywords
Aerogels, Aldehydes, Cellulose, Chemical stability, Crosslinking, Freezing, Nanofibers, Acidic conditions, Ambient conditions, Cellulose nanofibrils (CNFs), Chemical cross-linking, Freezing process, Lower critical, Periodate oxidation, Solvent exchanges, Ice
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-247488 (URN)10.1039/c8ta06319b (DOI)000448413100008 ()2-s2.0-85055128762 (Scopus ID)
Note

QC 20190405

Available from: 2019-04-05 Created: 2019-04-05 Last updated: 2019-05-22Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9486-5288

Search in DiVA

Show all publications