kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 14) Show all publications
Enrico, A., Buchmann, S., De Ferrari, F., Lin, Y., Wang, Y., Yue, W., . . . Zeglio, E. (2024). Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors. Advanced Science
Open this publication in new window or tab >>Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
Show others...
2024 (English)In: Advanced Science, E-ISSN 2198-3844Article in journal (Refereed) Published
Abstract [en]

Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

Place, publisher, year, edition, pages
Wiley, 2024
Keywords
conjugated polymer, direct writing, organic electrochemical transistor, poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate, ultrashort pulsed lasers
National Category
Organic Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-342521 (URN)10.1002/advs.202307042 (DOI)001142422700001 ()2-s2.0-85182492139 (Scopus ID)
Funder
Swedish Research Council, 2018‐03483Swedish Research Council, 2022‐04060Swedish Research Council, 2022‐02855Knut and Alice Wallenberg Foundation, 2015.0178Knut and Alice Wallenberg Foundation, 2020.0206Knut and Alice Wallenberg Foundation, 2021.0312Swedish Research Council, 2022-00374
Note

QC 20240123

Available from: 2024-01-23 Created: 2024-01-23 Last updated: 2024-02-06Bibliographically approved
Buchmann, S., Enrico, A., Holzreuter, M. A., Reid, M. S., Zeglio, E., Niklaus, F., . . . Herland, A. (2023). Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling. Materials Today Bio, 21, 100706-100706, Article ID 100706.
Open this publication in new window or tab >>Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling
Show others...
2023 (English)In: Materials Today Bio, ISSN 2590-0064, Vol. 21, p. 100706-100706, article id 100706Article in journal (Refereed) Published
Abstract [en]

To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type isnecessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometricprecision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalizedmicrofluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial charac-terization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structuresprinted with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-stepstrategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms net-works on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-cultureseeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentaliza-tion of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complextissue, such as the human brain.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Two-photon polymerization Neurons Astrocytes Calcium imaging Co-culture models IP-Visio
National Category
Nano Technology Bio Materials Cell Biology
Identifiers
urn:nbn:se:kth:diva-331732 (URN)10.1016/j.mtbio.2023.100706 (DOI)001030630300001 ()37435551 (PubMedID)2-s2.0-85166735644 (Scopus ID)
Note

Correction in Materials Today Bio, vol. 23. DOI:10.1016/j.mtbio.2023.100892

QC 20231221

Available from: 2023-07-14 Created: 2023-07-14 Last updated: 2024-02-06Bibliographically approved
Enrico, A., Hartwig, O., Dominik, N., Quellmalz, A., Gylfason, K., Duesberg, G. S., . . . Stemme, G. (2023). Ultrafast and Resist-Free Nanopatterning of 2D Materials by Femtosecond Laser Irradiation. ACS Nano, 17(9), 8041-8052
Open this publication in new window or tab >>Ultrafast and Resist-Free Nanopatterning of 2D Materials by Femtosecond Laser Irradiation
Show others...
2023 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 17, no 9, p. 8041-8052Article in journal (Refereed) Published
Abstract [en]

The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe2), molybdenum disulfide (MoS2), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 μm × 200 μm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
Keywords
direct writing, graphene, MoS 2, photoablation, PtSe 2, two-photon patterning
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-331603 (URN)10.1021/acsnano.2c09501 (DOI)000974543800001 ()37074334 (PubMedID)2-s2.0-85154063996 (Scopus ID)
Note

QC 20230711

Available from: 2023-07-11 Created: 2023-07-11 Last updated: 2023-07-11Bibliographically approved
Enrico, A., Voulgaris, D., Östmans, R., Sundaravadivel, N., Moutaux, L., Cordier, A., . . . Stemme, G. (2022). 3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen. Advanced Materials, 34(11)
Open this publication in new window or tab >>3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen
Show others...
2022 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 11Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Wiley, 2022
National Category
Other Medical Engineering
Identifiers
urn:nbn:se:kth:diva-311485 (URN)10.1002/adma.202109823 (DOI)000751398600001 ()35029309 (PubMedID)2-s2.0-85124472232 (Scopus ID)
Note

QC 20220509

Available from: 2022-04-28 Created: 2022-04-28 Last updated: 2022-06-25Bibliographically approved
Enrico, A. (2022). Bright Lights: Innovative Micro- and Nano-Patterning for Sensing and Tissue Engineering. (Doctoral dissertation). Kungliga tekniska högskolan
Open this publication in new window or tab >>Bright Lights: Innovative Micro- and Nano-Patterning for Sensing and Tissue Engineering
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Light is the primary source of energy on our planet and has been a significant driver in the evolution of human society and technology. Light finds applications in two-dimensional (2D) photolithography and three-dimensional (3D) printing, where a pattern is transferred to a material of interest by ultraviolet (UV) light exposure, and in laser scribing and cutting, where high power lasers are used to pattern the surface of objects or cut through the bulk of the material of interest. However, conventional light-based processing has three main constraints: a) the wavelength of visible light limits resolution, b) only materials that absorb the wavelength in use can be efficiently processed, and c) intense laser light burns its target, degrading the material surrounding the exposed areas and further limiting material compatibility. Overcoming these limitations is the core of this thesis.

The first part of this thesis describes three different patterning methods enabled by intelligent design and non-linear light-matter interaction. The first work reports the use of light at 365 nm to generate sub-20 nm wide nanowires (NWs) exploiting crack lithography, exceeding the possible resolution given by diffraction limit by 10-fold. The second work describes how the non-linear interaction of femtosecond laser pulses with otherwise transparent glass enables nanostructuring of borosilicate coverslips. Positively charging the nanostructured glass surfaces grants a “attract and destroy” bactericidal functionality and maintains the transparency of the substrate, creating a microscopy compatible platform to study bacteria-surface interactions and providing strategies to fight antibiotic-resistant bacteria. The third and fourth works show how femtosecond lasers can directly pattern carbon nanotube films and 2D materials (graphene, molybdenum disulfide, and platinum diselenide) without damaging the substrate or the material surrounding the exposed area. Non-linear interaction with high-energy laser pulses allows sub-300 nm resolution, circumventing the limit given by light diffraction in the linear regime. The combination of high resolution, femtosecond exposure, and ultrafast scanning speed provides a valid alternative to resist-based photolithography while eliminating the related contamination issues for these sensitive materials.

The second part of this thesis describes two different 3D micromachining approaches enabled by high-intensity laser light. The fifth work presents a collagen patterning method based on laser-induced cavitation, called cavitation molding. This method represents a new biomanufacturing mode that is neither additive nor subtractive. In this study, cavitation molding enables the generation of a micro vascularized cancer-on-chip model, consisting of an in-vivo-like spheroidal mass of cancer cells surrounded by artificial blood vessels. In the sixth and final work, we used two-photon polymerization to generate 3D platforms in a biocompatible resin. This platform enables the study of the physiology of neurons and their interaction with astrocyte cells. The low autofluorescence of the printed resins allows optical readout of the neuronal activity by calcium imaging.

Abstract [sv]

Ljus är den primära energikällan på vår planet och har varit en viktig motivation i utvecklingen av det mänskliga samhället och teknologin. Inom mikrotillverkning finner ljus tillämpningar inom fotolitografi och 3D-printing, där ett 2D- eller 3D-mönster överförs till ett material av intresse genom exponering för UV-ljus, och i laserritning och skärning, där högeffektlasrar används för att skapa mönster på föremålets yta eller skära igenom huvuddelen av materialet av intresse. Likväl, har dock konventionell ljusbaserad bearbetning tre huvudbegränsningar: a) våglängden för synligt ljus begränsar upplösningen, b) endast material som absorberar våglängden vid användning kan bearbetas effektivt, och c) intensivt laserljus bränner upp sitt målobjekt, vilket försämrar materialet som omger de exponerade områdena och ytterligare begränsar materialkompatibiliteten. Att övervinna dessa begränsningar är kärnan i denna avhandling.

Den första delen av denna avhandling beskriver tre olika tvådimensionella mönstringsmetoder som möjliggörs av intelligent design och icke-linjär ljus-materia interaktion. Det första arbetet rapporterar användningen av ljus vid 365 nm för att generera sub-20 nm breda nanotrådar (NW) genom att utnyttja cracklitografi, vilket överskrider den möjliga upplösningen som ges av diffraktionsgränsen tiofaldigt. Det andra verket beskriver användningen av femtosekundlaserpulser för att strukturera ytan på glasskivor, som vanligtvis skulle vara transparenta för mindre intensivt synligt ljus. Positiv laddning av de nanostrukturerade glasytorna ger en "sök och förstör" bakteriedödande funktionalitet, vilket möjliggör nya grundläggande studier av interaktioner mellan bakterier och yta och tillhandahåller strategier för att bekämpa antibiotikaresistenta bakterier. Det tredje och fjärde verket visar hur ultrasnabba lasrar selektivt kan mönstra 2D-material – grafen, molybdendisulfid och platinadiselenid – och tunna filmer – kolnanorörsfilm – utan att skada substratet eller materialet som omger det exponerade området. Direkt mönstring med ultrasnabb skanningshastighet ger processskalbarhet och upplösning under 300 nm, vilket ger ett giltigt alternativ till resistbaserad fotolitografi och relaterade kontamineringsproblem för dessa känsliga material.

Den andra delen av denna avhandling beskriver två olika 3D-mikrobearbetningsmetoder som möjliggörs av högintensivt laserljus. Det femte arbetet presenterar en biotillverkningsmetod för att strukturera kollagen baserat på laserinducerad kavitation. Denna metod, kallad kavitationsgjutning, representerar ett nytt biotillverkningsläge som varken är additivt eller subtraktivt. I denna studie möjliggör kavitationsformning genereringen av en mikrovaskulariserad cancer-on-chip-modell, bestående av en in-vivo-liknande sfäroidal massa av cancerceller omgivna av konstgjorda blodkärl. I det sjätte och sista arbetet använde vi två-fotonpolymerisation för att generera icke-cytotoxiska 3D-strukturer för att studera neuronernas fysiologi och deras interaktion med astrocytceller. Den låga autofluorescensen hos de tryckta hartserna tillåter optisk avläsning av den neuronala aktiviteten genom kalciumavbildning.

Place, publisher, year, edition, pages
Kungliga tekniska högskolan, 2022. p. 71
Series
TRITA-EECS-AVL ; 2022:28
Keywords
Micro-electromechanical systems (MEMS), nanotechnology, nanowires, microfabrication, tissue engineering, crack-lithography, direct writing, femtosecond lasers, two-photon polymerization, 3D micromachining, cavitation molding, scalable optical patterning, 2D materials, surface structuring, bacterial-surface interaction.
National Category
Nano Technology Other Medical Engineering Manufacturing, Surface and Joining Technology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-311503 (URN)978-91-8040-208-8 (ISBN)
Public defence
2022-05-23, F3, Lindstedtsvägen 26 & 28, floor 2, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20220429

Available from: 2022-04-29 Created: 2022-04-29 Last updated: 2022-09-20Bibliographically approved
Chen, C., Enrico, A., Pettersson, T., Ek, M., Herland, A., Niklaus, F., . . . Wågberg, L. (2020). Bactericidal surfaces prepared by femtosecond laser patterning andlayer-by-layer polyelectrolyte coating. Journal of Colloid and Interface Science, 575, 286-297
Open this publication in new window or tab >>Bactericidal surfaces prepared by femtosecond laser patterning andlayer-by-layer polyelectrolyte coating
Show others...
2020 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 575, p. 286-297Article in journal (Refereed) Published
Abstract [en]

Antimicrobial surfaces are important in medical, clinical, and industrial applications, where bacterial infection and biofouling may constitute a serious threat to human health. Conventional approaches against bacteria involve coating the surface with antibiotics, cytotoxic polymers, or metal particles. However, these types of functionalization have a limited lifetime and pose concerns in terms of leaching and degradation of the coating. Thus, there is a great interest in developing long-lasting and non-leaching bactericidal surfaces. To obtain a bactericidal surface, we combine micro and nanoscale patterning of borosilicate glass surfaces by ultrashort pulsed laser irradiation and a non-leaching layer-by-layer polyelectrolyte modification of the surface. The combination of surface structure and surface charge results in an enhanced bactericidal effect against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The laser patterning and the layer-by-layer modification are environmentally friendly processes that are applicable to a wide variety of materials, which makes this method uniquely suited for fundamental studies of bacteria-surface interactions and paves the way for its applications in a variety of fields, such as in hygiene products and medical devices.

Place, publisher, year, edition, pages
Academic Press, 2020
Keywords
Antimicrobial, Cationic polyelectrolytes, Ultrashort pulse laser, Escherichia coli, Staphylococcus aureus
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:kth:diva-273942 (URN)10.1016/j.jcis.2020.04.107 (DOI)000538935500029 ()32380320 (PubMedID)2-s2.0-85084111350 (Scopus ID)
Note

QC 20200623

Available from: 2020-06-02 Created: 2020-06-02 Last updated: 2024-03-18Bibliographically approved
Enrico, A., Dubois, V. J., Niklaus, F. & Stemme, G. (2019). Manufacturing of Sub-20 NM Wide Single Nanowire Devices using Conventional Stepper Lithography. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS): . Paper presented at 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 27-31 Jan. 2019 (pp. 244-247). IEEE conference proceedings
Open this publication in new window or tab >>Manufacturing of Sub-20 NM Wide Single Nanowire Devices using Conventional Stepper Lithography
2019 (English)In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), IEEE conference proceedings, 2019, p. 244-247Conference paper, Published paper (Refereed)
Abstract [en]

Single nanowires have a broad range of applications in chemical and bio-sensing, photonics, and material science, but realizing individual nanowire devices in a scalable manner remains extremely challenging. This work presents a scalable and flexible method to realize single gold nanowire devices. We use conventional optical stepper lithography to generate notched beam structures, and crack lithography to obtain sub-20-nm-wide nanogaps at the notches, thereby obtaining a suitable shadow mask to define a single nanowire device. Then a gold evaporation step through the shadow mask forms the individual gold nanowires with positional and dimensional accuracy and with electrical contacts to probing pads.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2019
Series
Proceedings IEEE Micro Electro Mechanical Systems, ISSN 1084-6999
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-268309 (URN)10.1109/MEMSYS.2019.8870647 (DOI)000541142100069 ()2-s2.0-85074363946 (Scopus ID)978-1-7281-1610-5 (ISBN)
Conference
2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 27-31 Jan. 2019
Note

QC 20200310

Available from: 2020-03-10 Created: 2020-03-10 Last updated: 2022-06-26Bibliographically approved
Enrico, A., Dubois, V. J., Niklaus, F. & Stemme, G. (2019). Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography. ACS Applied Materials and Interfaces, 11(8), 8217-8226
Open this publication in new window or tab >>Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 8, p. 8217-8226Article in journal (Refereed) Published
Abstract [en]

Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nano photonics, but, to date, no technique can produce single sub 20 nm wide NWs with electrical connections in a scalable fashion. In this work, we combine conventional optical and crack lithographies to generate single NW devices with controllable and predictable dimensions and placement and with individual electrical contacts to the NWs. We demonstrate NWs made of gold, platinum, palladium, tungsten, tin, and metal oxides. We have used conventional i-line stepper lithography with a nominal resolution of 365 nm to define crack lithography structures in a shadow mask for large-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold improvement over the resolution that is possible with the utilized stepper lithography. Overall, the proposed method represents an effective approach to generate single NW devices with useful applications in electrochemistry, photonics, and gas- and biosensing.

National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-250298 (URN)10.1021/acsami.8b19410 (DOI)000460365300061 ()30698940 (PubMedID)2-s2.0-85061896644 (Scopus ID)
Note

QC 20190430

Available from: 2019-04-29 Created: 2019-04-29 Last updated: 2024-03-18Bibliographically approved
Wang, X., Schröder, S., Enrico, A., Kataria, S., Lemme, M. C., Niklaus, F., . . . Roxhed, N. (2019). Transfer printing of nanomaterials and microstructures using a wire bonder. Journal of Micromechanics and Microengineering, 29(12), Article ID 125014.
Open this publication in new window or tab >>Transfer printing of nanomaterials and microstructures using a wire bonder
Show others...
2019 (English)In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 29, no 12, article id 125014Article in journal (Refereed) Published
Abstract [en]

Scalable and cost-efficient transfer of nanomaterials and microstructures from their original fabrication substrate to a new host substrate is a key challenge for realizing heterogeneously integrated functional systems, such as sensors, photonics, and electronics. Here we demonstrate a high-throughput and versatile integration method utilizing conventional wire bonding tools to transfer-print carbon nanotubes (CNTs) and silicon microstructures. Standard ball stitch wire bonding cycles were used as scalable and high-speed pick-and-place operations to realize the material transfer. Our experimental results demonstrated successful transfer printing of single-walled CNTs (100 μm-diameter patches) from their growth substrate to polydimethylsiloxane, parylene, or Au/parylene electrode substrates, and realization of field emission cathodes made of CNTs on a silicon substrate. Field emission measurements manifested excellent emission performance of the CNT electrodes. Further, we demonstrated the utility of a high-speed wire bonder for transfer printing of silicon microstructures (60 μm × 60 μm × 20 μm) from the original silicon on insulator substrate to a new host substrate. The achieved placement accuracy of the CNT patches and silicon microstructures on the target substrates were within ± 4 μm. These results show the potential of using established and extremely cost-efficient semiconductor wire bonding infrastructure for transfer printing of nanomaterials and microstructures to realize integrated microsystems and flexible electronics.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
assembly, carbon nanotubes, field emission, flexible electronics, heterogeneous integration, transfer printing, wire bonding
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:kth:diva-311499 (URN)10.1088/1361-6439/ab4d1f (DOI)000493114400001 ()2-s2.0-85076055727 (Scopus ID)
Note

Not duplicate with DiVA 1350648

QC 20220530

Available from: 2022-04-29 Created: 2022-04-29 Last updated: 2022-06-25Bibliographically approved
Shin, S. R., Migliori, B., Miccoli, B., Li, Y.-C., Mostafalu, P., Seo, J., . . . Khademhosseini, A. (2018). Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 30(10), Article ID 1704189.
Open this publication in new window or tab >>Electrically Driven Microengineered Bioinspired Soft Robots
Show others...
2018 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 10, article id 1704189Article in journal (Refereed) Published
Abstract [en]

To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2018
Keywords
bioinspiration, bioactuators, cardiac tissue engineering, flexible microelectrodes, hydrogels
National Category
Robotics
Identifiers
urn:nbn:se:kth:diva-225058 (URN)10.1002/adma.201704189 (DOI)000426720400001 ()29323433 (PubMedID)2-s2.0-85040627237 (Scopus ID)
Note

QC 20180328

Available from: 2018-03-28 Created: 2018-03-28 Last updated: 2024-03-18Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8821-6759

Search in DiVA

Show all publications