Change search
Link to record
Permanent link

Direct link
BETA
Pirisi, Roberto
Publications (2 of 2) Show all publications
Fringuelli, R. & Pirisi, R. (2019). The Picard group of the universal abelian variety and the Franchetta conjecture for abelian varieties. The Michigan mathematical journal, 68(3), 651-671
Open this publication in new window or tab >>The Picard group of the universal abelian variety and the Franchetta conjecture for abelian varieties
2019 (English)In: The Michigan mathematical journal, ISSN 0026-2285, E-ISSN 1945-2365, Vol. 68, no 3, p. 651-671Article in journal (Refereed) Published
Abstract [en]

We compute the Picard group of the universal Abelian variety over the moduli stack Ag,n of principally polarized Abelian varieties over C with a symplectic principal level n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a suitable form for Ag,n.

Place, publisher, year, edition, pages
University of Michigan, 2019
National Category
Mathematics
Identifiers
urn:nbn:se:kth:diva-262417 (URN)10.1307/mmj/1564106669 (DOI)000490044300009 ()2-s2.0-85071723664 (Scopus ID)
Note

QC 20191030

Available from: 2019-10-30 Created: 2019-10-30 Last updated: 2019-10-30Bibliographically approved
Pirisi, R. (2018). Cohomological Invariants Of Genus Three Hyperelliptic Curves. Documenta Mathematica, 23, 969-996
Open this publication in new window or tab >>Cohomological Invariants Of Genus Three Hyperelliptic Curves
2018 (English)In: Documenta Mathematica, ISSN 1431-0635, E-ISSN 1431-0643, Vol. 23, p. 969-996Article in journal (Refereed) Published
Abstract [en]

We compute the cohomological invariants with coefficients in Z/pZ of the stack H-3 of hyperelliptic curves of genus 3 over an algebraically closed field.

Place, publisher, year, edition, pages
FIZ Karlsruhe - Leibniz-Institut für Informationsinfrastruktur, 2018
Keywords
Cohomological invariants, hyperelliptic curve, moduli stack, equivariant Chow rings
National Category
Mathematics
Identifiers
urn:nbn:se:kth:diva-252940 (URN)000468272500031 ()2-s2.0-85068149525 (Scopus ID)
Note

QC 20190612

Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2019-10-04Bibliographically approved
Organisations

Search in DiVA

Show all publications