kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 16) Show all publications
Garrido, M. D., Hamawandi, B., Serrano-Claumarchirant, J. F., Saladino, G., Ergül, A., Marcos, M. D., . . . Toprak, M. (2025). A rapid synthesis of magnetic-core mesoporous silica-shell nanostructures - as potential theranostic agents - by means of microwave irradiation and the atrane method. Nanoscale, 17(11), 6539-6549
Open this publication in new window or tab >>A rapid synthesis of magnetic-core mesoporous silica-shell nanostructures - as potential theranostic agents - by means of microwave irradiation and the atrane method
Show others...
2025 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 17, no 11, p. 6539-6549Article in journal (Refereed) Published
Abstract [en]

Nowadays, the interest in the design of particles that combine therapy and diagnosis simultaneously to obtain a theranostic material has increased. One of the most used materials for MRI diagnosis is iron oxide, where clusters of superparamagnetic iron oxide (SPIONs) are noteworthy candidates. These particles are of high interest due to their broad range of applications, such as contrast agents, use in magnetic separation processes, and in hyperthermia therapy, among others. One of the major problems with their use is maintaining superparamagnetism while having the highest magnetization-to-particle ratio. In this work, microwave-assisted synthesis of clusters formed by SPIONs has been investigated. This synthesis strategy allows for significant reduction in the time and energy required to obtain SPION clusters. Also, the magnetization-to-particle ratio has been increased in comparison with single SPIONs. Subsequently, the clusters are coated with amorphous silica using the Stöber method, followed by mesoporous (MS) silica using the atrane method, which offers high and conformal coating homogeneity over the clusters. Surfactant extraction was done using a simple mixture of water, ethanol, and sodium chloride – avoiding the use of other organic solvents. Finally, as a proof of concept, the loading and release of a model molecule were studied to confirm that the SPION-NCs@MS presented in this work have great potential as theranostic agents.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2025
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-360768 (URN)10.1039/d4nr04572f (DOI)001422395700001 ()39957369 (PubMedID)2-s2.0-86000802181 (Scopus ID)
Note

QC 20250327

Available from: 2025-03-03 Created: 2025-03-03 Last updated: 2025-03-27Bibliographically approved
Arsana, K. G. .., Saladino, G., Brodin, B., Toprak, M. & Hertz, H. (2024). Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications. International Journal of Molecular Sciences, 25(2), Article ID 920.
Open this publication in new window or tab >>Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications
Show others...
2024 (English)In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 25, no 2, article id 920Article in journal (Refereed) Published
Abstract [en]

Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.

Place, publisher, year, edition, pages
MDPI AG, 2024
Keywords
bioimaging, cell imaging, liquid-jet X-ray source, multiplexed imaging, nanomedicine, stain-free imaging, X-ray fluorescence imaging, X-ray microscopy
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-343205 (URN)10.3390/ijms25020920 (DOI)001151313100001 ()38255992 (PubMedID)2-s2.0-85183335794 (Scopus ID)
Note

QC 20240209

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2025-01-03Bibliographically approved
Saladino, G., Chao, P.-H., Brodin, B., Li, S.-D. & Hertz, H. (2024). Liposome biodistribution mapping with in vivo X-ray fluorescence imaging. Nanoscale, 16(37), 17404-17411
Open this publication in new window or tab >>Liposome biodistribution mapping with in vivo X-ray fluorescence imaging
Show others...
2024 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 16, no 37, p. 17404-17411Article in journal (Refereed) Published
Abstract [en]

Lipid-based nanoparticles are organic nanostructures constituted of phospholipids and cholesterol, displaying high in vivo biocompatibility. They have been demonstrated as effective nanocarriers for drug delivery and targeting. Mapping liposome distribution is crucial as it enables a precise understanding of delivery kinetics, tissue targeting efficiency, and potential off-target effects. Recently, ruthenium-encapsulated liposomes have shown potential for targeted drug delivery, photodynamic therapy, and optical fluorescence imaging. In the present work, we design Ru(bpy)3-encapsulated liposomes (Ru-Lipo) empowering optical and X-ray fluorescence (XRF) properties for dual mode imaging and demonstrate the passivation role of liposomes over the free Ru(bpy)3 compound. We employ whole-body XRF imaging to map the in vivo biodistribution of Ru-Lipo in mice, enabling tumor detection and longitudinal studies with elemental specificity and resolution down to the sub-millimeter scale. Quantitative XRF computed tomography on extracted organs permits targeting efficiency evaluations. These findings highlight the promising role of XRF imaging in pharmacokinetic studies and theranostic applications for the rapid optimization of drug delivery and assessment of targeting efficiency.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2024
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-352475 (URN)10.1039/d4nr02793k (DOI)001303072700001 ()39212620 (PubMedID)2-s2.0-85202916641 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, 2016.0057
Note

QC 20240903

Available from: 2024-09-03 Created: 2024-09-03 Last updated: 2025-02-11Bibliographically approved
Saladino, G. M. (2024). Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

X-ray fluorescence imaging (XFI) is an emerging technique for preclinical studies, characterized by high resolution, specificity, and sensitivity. It relies on nanoparticles (NPs) as contrast agents, which must be constituted of specific elements that match the X-ray source energy for detection. Laboratory liquid metal-jet X-ray sources enable compact in vivo XFI, thereby extending the accessibility of this imaging technique beyond synchrotron facilities.

When designing NPs as contrast agents, biocompatibility is essential for both preclinical and clinical imaging, often requiring a passivating biocompatible coating on the NP surface. The NP cores can provide contrast by their elemental composition, while coating, conjugation, and decoration strategies can add other functionalities and improve biocompatibility.

In this thesis, multifunctional NPs are designed to extend the functionality of XFI contrast agents by incorporating optically fluorescent or magnetically active components: conjugated carbon quantum dots, dye-doped silica shell, and decorated superparamagnetic iron oxide NPs. The designed multifunctional NPs allow correlative and multiscale imaging with complementary techniques such as confocal optical microscopy or magnetic resonance imaging (MRI). Furthermore, these NPs also facilitate more comprehensive studies on NP pharmacokinetics, paving the way for more robust investigations in the field of nanomedicine.

The benefits of multifunctional NPs are demonstrated with two approaches. First, in vivo correlative imaging with MRI and XFI is shown to reduce false positives caused by MRI artifacts in the lungs and abdomen. Second, XFI is employed to enable rapid NP bioengineering, by iteratively improving NP properties and administration strategies for passive tumor targeting. Optical and X-ray fluorescent multifunctional NPs enable the co-localization of NPs at both macroscopic and microscopic levels with XFI and confocal microscopy, correlating NP accumulation in organs with NP-cell interactions. These results highlight the role of XFI in the field of nanomedicine, with potential applications in pharmacokinetics, tumor targeting, treatment monitoring, and the development of medical devices.

Abstract [sv]

Röntgenfluorescensavbildning (RFA) är en växande teknik för prekliniska studier, och karakteriseras av hög upplösning, specificitet och känslighet. RFA använder nanopartiklar (NP:ar) som kontrastmedel, vilket måste innehålla specifika element som matchar röntgenkällans energi. Röntgenkällor med flytande metallstråleteknik möjliggör kompakt in vivo RFA i laboratorier, vilket gör denna avbildningsteknik tillgänglig även utanför synkrotronanläggningar.

Vid utformningen av NP:ar som kontrastmedel är biokompatibilitet avgörande betydelse både för preklinisk och klinisk avbildning, vilket ofta kräver ett passiverande biokompatibelt skikt på NP-ytan. NP-kärnorna kan ge kontrast genom sin grundämnessammansättning, medan beläggnings-, konjugerings- och dekorationsstrategier kan lägga till andra funktionaliteter och förbättra biokompatibiliteten.

I denna avhandling syntetiseras multifunktionella NP:ar för att utöka funktionaliteten hos RFA-kontrastmedel genom att inkorporera optiskt fluorescerande eller magnetiskt aktiva komponenter: konjugerade kolkvantprickar, färgämnesdopat  kiseldioxidskal och dekorerade superparamagnetiska järnoxid NP:ar. De utformade multifunktionella NP:arna möjliggör korrelativ avbildning med kompletterande tekniker som konfokal optisk mikroskopi eller magnetisk resonanstomografi (MR). Dessutom underlättar dessa NP:ar också mer omfattande studier av NP-farmakokinetik, vilket banar väg för bättre underbyggda undersökningar inom nanomedicin.

Fördelarna med multifunktionella NP:ar demonstreras med två tillvägagångssätt. För det första har in vivo korrelativ avbildning med MR och RFA visat sig minska antalet falska positiva resultat orsakade av MR-artefakter i lungorna och buken. För det andra används RFA för att möjliggöra snabb utveckling och design av NP:ar, genom att iterativt förbättra NP-egenskaper och administreringsstrategier för passiv ansamling i tumörer. Optiska och röntgenfluorescerande multifunktionella NP:ar möjliggör samlokalisering av NP:ar på både makroskopisk och mikroskopisk nivå med RFA och konfokal mikroskopi, vilket korrelerar NP-ackumuleringar i organ med NP-cellinteraktioner. Dessa resultat belyser RFA:s roll inom nanomedicinfältet, med dess potentiella tillämpningar inom farmakokinetik, tumörmålsökning, behandlingsövervakning och utveckling av medicinska instrument.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-343804 (URN)978-91-8040-841-7 (ISBN)
Public defence
2024-03-22, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 240227

Available from: 2024-02-27 Created: 2024-02-22 Last updated: 2024-02-27Bibliographically approved
Saladino, G., Kakadiya, R., Ansari, S. R., Teleki, A. & Toprak, M. (2023). Magnetoresponsive fluorescent core–shell nanoclusters for biomedical applications. Nanoscale Advances, 5(5), 1323-1330
Open this publication in new window or tab >>Magnetoresponsive fluorescent core–shell nanoclusters for biomedical applications
Show others...
2023 (English)In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 5, no 5, p. 1323-1330Article in journal (Refereed) Published
Abstract [en]

Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have a dominant role in many subfields of biomedicine. Owing to their peculiar properties, they can be employed for magnetic separation, drug delivery, diagnostics, and hyperthermia treatments. However, these magnetic nanoparticles (NPs) suffer from low unit magnetization due to size constraints (up to 20-30 nm) to exhibit superparamagnetic character. In this work, we have designed and synthesized superparamagnetic nanoclusters (SP-NCs) with diameters of up to 400 nm with high unit magnetization for enhanced loading capacity. These were synthesized with conventional or microwave-assisted solvothermal methods, in the presence of either of the two biomolecules (citrate or l-lysine) as the capping agent. Primary particle size, SP-NC size, surface chemistry, and the resultant magnetic properties were observed to be significantly influenced by the choice of synthesis route and capping agent. Selected SP-NCs were then coated with a fluorophore-doped silica shell to provide fluorescence properties, in the near-infrared spectrum region, while silica provided high chemical and colloidal stability. Heating efficiency studies were performed under alternating magnetic field on the synthesized SP-NCs, highlighting their potential in hyperthermia treatment. We envision that their enhanced magnetically-active content, fluorescence, magnetic property, and heating efficiency will pave the way to more effective uses in biomedical applications.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2023
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-338019 (URN)10.1039/d2na00887d (DOI)000928612000001 ()36866251 (PubMedID)2-s2.0-85148631781 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, 2016.0057EU, Horizon 2020, 101002582Science for Life Laboratory, SciLifeLab
Note

QC 20231016

Available from: 2023-10-12 Created: 2023-10-12 Last updated: 2024-02-22Bibliographically approved
Vogt, C., Saladino, G., Shaker, K., Arsenian-Henriksson, M., Hertz, H., Toprak, M. & Brodin, B. (2023). Organ uptake, toxicity and skin clearance of ruthenium contrast agents monitored in vivo by x-ray fluorescence. Nanomedicine, 18(18), 1161-1173
Open this publication in new window or tab >>Organ uptake, toxicity and skin clearance of ruthenium contrast agents monitored in vivo by x-ray fluorescence
Show others...
2023 (English)In: Nanomedicine, ISSN 1743-5889, E-ISSN 1748-6963, Vol. 18, no 18, p. 1161-1173Article in journal (Refereed) Published
Abstract [en]

Aims: To investigate the distribution and toxicity of ruthenium nanoparticles (Ru NPs) injected intravenously in mice.

Methods: We synthesized Ru NPs, followed their biodistribution by x-ray fluorescence (XRF) imaging and evaluated organ toxicity by histopathology and gene expression.

Results: Ru NPs accumulated, mainly in liver and spleen, where they were phagocyted by tissue macrophages, giving a transient inflammation and oxidative stress response that declined after 2 weeks. Ru NPs gradually accumulated in the skin, which was confirmed by microscopic examination of skin biopsies.

Conclusion: Ru NP toxicity in recipient organs is transient. Particles are at least partially excreted by the skin, supporting a role for the skin as a nanoparticle clearing organ.

Place, publisher, year, edition, pages
Future Medicine Ltd, 2023
Keywords
contrast agents, imaging nanoparticles, in vivo imaging, medical imaging, metal nanoparticles, nanoparticle clearance, nanotoxicity, x-ray fluorescence
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-338020 (URN)10.2217/nnm-2023-0061 (DOI)001061631900001 ()37665018 (PubMedID)2-s2.0-85172828110 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2016.0057
Note

QC 20231013

Available from: 2023-10-12 Created: 2023-10-12 Last updated: 2024-02-22Bibliographically approved
Kilic, N. I., Saladino, G. M., Johansson, S., Shen, R., McDorman, C., Toprak, M. & Johansson, S. (2023). Two-Photon Polymerization Printing with High Metal Nanoparticle Loading. ACS Applied Materials and Interfaces, 15(42), 49794-49804
Open this publication in new window or tab >>Two-Photon Polymerization Printing with High Metal Nanoparticle Loading
Show others...
2023 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, no 42, p. 49794-49804Article in journal (Refereed) Published
Abstract [en]

Two-photon polymerization (2PP) is an efficient technique to achieve high-resolution, three-dimensional (3D)-printed complex structures. However, it is restricted to photocurable monomer combinations, thus presenting constraints when aiming at attaining functionally active resist formulations and structures. In this context, metal nanoparticle (NP) integration as an additive can enable functionality and pave the way to more dedicated applications. Challenges lay on the maximum NP concentrations that can be incorporated into photocurable resist formulations due to the laser-triggered interactions, which primarily originate from laser scattering and absorption, as well as the limited dispersibility threshold. In this study, we propose an approach to address these two constraints by integrating metallic Rh NPs formed ex situ, purposely designed for this scope. The absence of surface plasmon resonance (SPR) within the visible and near-infrared spectra, coupled with the limited absorption value measured at the laser operating wavelength (780 nm), significantly limits the laser-induced interactions. Moreover, the dispersibility threshold is increased by engineering the NP surface to be compatible with the photocurable resin, permitting us to achieve concentrations of up to 2 wt %, which, to our knowledge, is significantly higher than the previously reported limit (or threshold) for embedded metal NPs. Another distinctive advantage of employing Rh NPs is their role as promising contrast agents for X-ray fluorescence (XRF) bioimaging. We demonstrated the presence of Rh NPs within the whole 2PP-printed structure and emphasized the potential use of NP-loaded 3D-printed nanostructures for medical devices.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
Keywords
additive manufacturing, metal nanoparticles, nanoparticle surface engineering, two-photon polymerization, X-ray fluorescence
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:kth:diva-339514 (URN)10.1021/acsami.3c10581 (DOI)001082684900001 ()37816209 (PubMedID)2-s2.0-85175269890 (Scopus ID)
Note

QC 20231114

Available from: 2023-11-14 Created: 2023-11-14 Last updated: 2024-02-22Bibliographically approved
Saladino, G. M., Kilic, N. I., Shaker, K., Li, Y., Hamawandi, B., Vogt, C., . . . Toprak, M. (2022). Functional Coatings for X-ray Fluorescent Nanoparticles. In: Proceedings of the 6th International Conference on Theoretical and Applied Nanoscience and Nanotechnology, TANN 2022: . Paper presented at Proceedings of the 6th International Conference on Theoretical and Applied Nanoscience and Nanotechnology, TANN 2022, Niagara Falls, Canada, Jun 2 2022 - Jun 4 2022. Avestia Publishing
Open this publication in new window or tab >>Functional Coatings for X-ray Fluorescent Nanoparticles
Show others...
2022 (English)In: Proceedings of the 6th International Conference on Theoretical and Applied Nanoscience and Nanotechnology, TANN 2022, Avestia Publishing , 2022Conference paper, Published paper (Refereed)
Abstract [en]

In recent years, the design and synthesis of bio-compatible coatings leading to hybrid nanoparticles (NPs) as the contrast agents have gained substantial relevance. Furthermore, the addition of several functionalities for bio-imaging applications represents a key step for non-invasive bio-diagnostics. In this context, we design and utilize hybrid nanostructures for X-ray fluorescence computed tomography (XFCT). The combination of a ceramic or metallic core–based on MoO2, Rh or Ru–with a protective shell allows the generation of bio-compatible nanohybrids for dual mode bio-imaging, where the core NPs constitute the X-ray fluorescence (XRF) contrast agents [1]–[3]. Core NPs are synthesized via polyol, hydrothermal or microwave-assisted hydrothermal methods, yielding uniform shape and high dispersibility in aqueous media. Different approaches have been pursued for the fabrication of a bio-compatible shell coating. A modified sol-gel based silica coating process, doped with a commercial fluorophore (Cy5.5), was developed and shown to be applicable to both ceramic and metallic NPs [4], forming core-shell NPs with both optical and X-ray fluorescence properties. Alternatively, carbon quantum dots (CQDs) were synthesized via citrate pyrolysis using microwave-assisted hydrothermal method, exhibiting uniform size distribution (1.6±0.4 nm) and excitation-independent emission (440 nm). Conjugation of these CQDs, via cross-linking, with Rh NPs led to excitation-independent hybrid NPs, with a red-shifted emission wavelength (520 nm), attributed to the reduction of pyrrolic nitrogen on CQDs [5]. These hybrid NPs exhibit improved in vitro biocompatibility in comparison with bare XRF contrast agents. Furthermore, the optical fluorescence–provided by Cy5.5 or CQDs–allows the localization of the NPs in the intracellular environment while the XRF signal from the core NPs is utilized for XFCT, in small animals, leading to both a microscopic and macroscopic bio-imaging contrast agent.

Place, publisher, year, edition, pages
Avestia Publishing, 2022
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-338379 (URN)10.11159/tann22.129 (DOI)2-s2.0-85173044731 (Scopus ID)
Conference
Proceedings of the 6th International Conference on Theoretical and Applied Nanoscience and Nanotechnology, TANN 2022, Niagara Falls, Canada, Jun 2 2022 - Jun 4 2022
Note

Part of proceedings ISBN 9781990800030

QC 20231023

Available from: 2023-10-23 Created: 2023-10-23 Last updated: 2023-10-23Bibliographically approved
Saladino, G., Vogt, C., Brodin, B., Shaker, K., Kilic, N. I., Andersson, K., . . . Hertz, H. (2022). XFCT-MRI hybrid multimodal contrast agents for complementary imaging. Nanoscale, 15(5), 2214-2222
Open this publication in new window or tab >>XFCT-MRI hybrid multimodal contrast agents for complementary imaging
Show others...
2022 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 15, no 5, p. 2214-2222Article in journal (Refereed) Published
Abstract [en]

Multimodal contrast agents in biomedical imaging enable the collection of more comprehensive diagnostic information. In the present work, we design hybrid ruthenium-decorated superparamagnetic iron oxide nanoparticles (NPs) as the contrast agents for both magnetic resonance imaging (MRI) and X-ray fluorescence computed tomography (XFCT). The NPs are synthesized via a one-pot polyol hot injection route, in diethylene glycol. In vivo preclinical studies demonstrate the possibility of correlative bioimaging with these contrast agents. The complementarity allows accurate localization, provided by the high contrast of the soft tissues in MRI combined with the elemental selectivity of XFCT, leading to NP detection with high specificity and resolution. We envision that this multimodal imaging could find future applications for early tumor diagnosis, improved long-term treatment monitoring, and enhanced radiotherapy planning.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
National Category
Radiology, Nuclear Medicine and Medical Imaging Medical Imaging
Identifiers
urn:nbn:se:kth:diva-330074 (URN)10.1039/d2nr05829d (DOI)000910968100001 ()36625091 (PubMedID)2-s2.0-85146170864 (Scopus ID)
Note

QC 20230626

Available from: 2023-06-26 Created: 2023-06-26 Last updated: 2025-02-09Bibliographically approved
Saladino, G. M., Hamawandi, B., Demir, M. A., Yazgan, I. & Toprak, M. (2021). A versatile strategy to synthesize sugar ligand coated superparamagnetic iron oxide nanoparticles and investigation of their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613, Article ID 126086.
Open this publication in new window or tab >>A versatile strategy to synthesize sugar ligand coated superparamagnetic iron oxide nanoparticles and investigation of their antibacterial activity
Show others...
2021 (English)In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 613, article id 126086Article in journal (Refereed) Published
Abstract [en]

For the time being, a great attention has been given to the search of green and reusable materials with antibacterial properties. The present research focused on the design and synthesis of hybrid structures constituting superparamagnetic iron oxide nanoparticles (SPIONs) coated with sugar ligands (SL), synthesized using a green and efficient microwave (MW)-assisted hydrothermal synthesis. The sugar ligands were selectively engineered to obtain antibacterial characteristics towards multi-drug resistant bacterial strains, which are among the most problematic bacterial species in antibiotic development efforts. The superparamagnetic behavior was obtained by synthesizing core iron oxide nanoparticles with a diameter below twenty nm. The MW-assisted hydrothermal method yielded a uniform coating of SPIONs with several sugar ligands, granting strongly negative-charged surfaces, which have eventually contributed to their bactericidal activity. The research work allowed to get insights into the magnetic properties of the sugar ligand coated SPIONs, as well as on morphological and functional characteristics of the hybrid nanoparticles, by employing both spectroscopy and imaging techniques, such as FT-IR, Scanning/Transmission Electron Microscopy (S/TEM). Detailed characterizations of the nanoparticles' charge, using zeta potential analysis helped to identify the highly charged hybrids for antibacterial applications. Furthermore, studies on the bactericidal properties of selected SL-SPION hybrids highlighted a high selectivity towards both gram-negative and gram-positive bacteria along with improving bactericidal activity of streptomycin/penicillin mixture. Detailed studies done on Pseudomonas aeruginosa revealed that the SPIONs selectively downregulated the virulence factor pyoverdine and altered bacterial morphology depending on the SL chemistry. The synthesized materials with antibacterial activity pave the way for an effective path towards the design and development of nanostructures and coatings against antibiotic-resistant bacterial species.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Sugar ligands, Iron oxide, Antibacterial properties, Bactericide nanoparticles, Superparamagnetic nanoparticles, Microwave-assisted synthesis
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-292158 (URN)10.1016/j.colsurfa.2020.126086 (DOI)000620191700008 ()2-s2.0-85098792811 (Scopus ID)
Note

QC 20210326

Available from: 2021-03-26 Created: 2021-03-26 Last updated: 2024-03-18Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6854-1423

Search in DiVA

Show all publications