Open this publication in new window or tab >>Show others...
2014 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 5, p. 4018-Article in journal (Refereed) Published
Abstract [en]
Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion-gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved.
Keywords
Current International Research, Wood Cell-Walls, Rotational Diffusion, Microfibril Angle, Fibers, Flow, Nanopaper, Nanocomposites, Birefringence, Microchannels
National Category
Chemical Sciences Fluid Mechanics Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-133940 (URN)10.1038/ncomms5018 (DOI)000338836700002 ()24887005 (PubMedID)2-s2.0-84901950560 (Scopus ID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note
QC 20140812. Updated from manuscript to article in journal.
2013-11-132013-11-132025-02-05Bibliographically approved