kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (9 of 9) Show all publications
Jain, K., Wang, Z., Garma, L. D., Engel, E., Ciftci, G. C., Fager, C., . . . Wågberg, L. (2023). 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics. APPLIED MATERIALS TODAY, 30, Article ID 101703.
Open this publication in new window or tab >>3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics
Show others...
2023 (English)In: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 30, article id 101703Article in journal (Refereed) Published
Abstract [en]

There are many bioelectronic applications where the additive manufacturing of conductive polymers may be of use. This method is cheap, versatile and allows fine control over the design of wearable electronic devices. Nanocellulose has been widely used as a rheology modifier in bio-based inks that are used to print electrical components and devices. However, the preparation of nanocellulose is energy and time consuming. In this work an easy-to-prepare, 3D-printable, conductive bio-ink; based on modified cellulose fibers and poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS), is presented. The ink shows excellent printability, the printed samples are wet stable and show excellent electrical and electrochemical performance. The printed structures have a conductivity of 30 S/cm, high tensile strains (>40%), and specific capacitances of 211 F/g; even though the PEDOT:PSS only accounts for 40 wt% of the total ink composition. Scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), and Raman spectroscopy data show that the modified cellulose fibers induce conformational changes and phase separation in PEDOT:PSS. It is also demonstrated that wearable supercapacitors and biopotential-monitoring devices can be prepared using this ink.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Dialcohol-modified cellulose fibers, 3D printing, Conducting polymer, PEDOT:PSS, Bioelectronics
National Category
Textile, Rubber and Polymeric Materials Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323583 (URN)10.1016/j.apmt.2022.101703 (DOI)000912019800001 ()2-s2.0-85143488124 (Scopus ID)
Note

QC 20230208

Available from: 2023-02-08 Created: 2023-02-08 Last updated: 2023-02-08Bibliographically approved
Kotov, N., Larsson, P. A., Jain, K., Abitbol, T., Cernescu, A., Wågberg, L. & Johnson, C. M. (2023). Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohydrate Polymers, 302, Article ID 120320.
Open this publication in new window or tab >>Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy
Show others...
2023 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 302, article id 120320Article in journal (Refereed) Published
Abstract [en]

Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nano-cellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Nanocellulose, Cellulose nanocrystals, Cellulose nanofibrils, Crystalline and amorphous domains, Nano-FTIR spectroscopy, S-SNOM
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-322846 (URN)10.1016/j.carbpol.2022.120320 (DOI)000891746700002 ()36604038 (PubMedID)2-s2.0-85142692194 (Scopus ID)
Note

QC 20230109

Available from: 2023-01-09 Created: 2023-01-09 Last updated: 2023-07-03Bibliographically approved
Jain, K. (2022). Design of Cellulose-Based Electrically Conductive Composites: Fundamentals, Modifications, and Scale-up. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Design of Cellulose-Based Electrically Conductive Composites: Fundamentals, Modifications, and Scale-up
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern demand for consumer electronics is fueling the generation of 'E-waste.' Furthermore, theraw materials and manufacturing methods used in the fabrication of electronics are not sustainable.There is therefore the need to develop renewable and sustainable raw materials for electronicdevices that do not sacrifice performance; as well as a requirement to develop novel, scalable,sustainable electronic device fabrication methods that use these green electronic materials. To thisend, bio-based materials are an environment-friendly alternative to non-renewable materials; andprinted electronics could replace traditional manufacturing methods. Cellulose, one of the mostabundant biopolymers on Earth, exhibits an interesting hierarchical structure. Due to extensiveresearch over the years, there are a wide variety of established chemical modifications for cellulose,which can be harnessed to prepare high-performance electronic components. The hierarchicalstructure of cellulose is crucial in defining its material properties. In cellulose rich fibers, highmolecular mass glucan polymers are commonly found in the form of cellulose nanofibrils (CNFs);these can be liberated and, once so, are capable of self-assembling into a wide variety of structures.Since cellulose is electrically insulating, it needs to be made into composites with conductivematerials to form electrically conductive materials.This thesis investigates the interaction between cellulose and the conductive polymer PEDOT:PSS(poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate), and demonstrates how a fundamentalunderstanding of the interactions between the two can be used to guide the chemical modificationof cellulose for the large scale production of sustainable electronics. First, the PEDOT:PSS structurewas studied using molecular dynamics (MD) simulations and experimental methods. Secondly, theinteraction between cellulose and PEDOT:PSS was studied, and factors affecting this interactionwere identified. This knowledge was then applied to propose a molecular interaction mechanismbetween these materials. Nanocellulose, especially cellulose nanofibrils (CNFs), have been integralto the development of bio-based conductive composites. However, the nanofibrillation process isexpensive and energy-intensive. In addition, PEDOT:PSS is an expensive polymer. Therefore, inthis work, chemically modified fibers were used to improve the interaction between cellulose andPEDOT:PSS; and prepare fiber-based bioelectronics and energy storage devices. The large-scaleproduction of papers capable of energy storage has also been demonstrated using chemicallymodifiedfibers, the factors affecting the processing of these materials have been identifiedthroughout.

Abstract [sv]

En enorm efterfrågan på hemelektronik skapar ett stort "e-avfalls” problem i dagenssamhälle. De råvaror som idag används för att tillverka elektronik har ett högtkoldioxidavtryck, och traditionella tillverkningsmetoder för elektronik är dessutomenergikrävande. Därför finns det en stort behov av högpresterande, hållbara, billiga,förnyelsebara råvaror för elektroniska komponenter. Dessutom behövs nya, hållbarabearbetningsmetoder för att producera elektroniska komponenter med lägre mängderinbyggd energi. I detta avseende är biobaserade material ett miljövänligt alternativ till ickeförnybaramaterial och tryckt elektronik skulle kunna användas för att ersätta traditionellatillverkningsmetoder. Cellulosa är en mycket vanligt förekommande biopolymer i mångaväxter och i vissa djur och det finns många rationella metoder för att utvinna denna polymeroch polymeren är därför en mycket intressant råvara för framtida produkter. Denhögmolekylära glukanmolekylen organiseras i i de flesta fallen i cellulosa nanofibriller (CNF)som sedan anordnas i en hierarkisk struktur i makroskopiska fibrer. Modern forskning harockså visat att de frilagda fibrillerna kan självorganiseras i skräddarsydda nano-strukturersom kan vara mycket intressanta för att tillverka högpresterande elektroniska komponenter.Med hjälp av all den forskning som genomförts för cellulosamaterial genom åren finns detockså tillgång till en fantastisk verktygslåda för att kemiskt modifiera cellulosa för att passa iolika tillämpningar. Eftersom cellulosa är elektriskt isolerande är det nödvändigt attkombinera cellulosa med ett ledande material för att skapa skräddarsydda komponenter medgod elektrisk ledningsförmåga.Arbetet i denna avhandling har fokuserats på studera växelverkan mellan cellulosa och denledande polymer PEDOT:PSS, och för att klarlägga hur denna grundläggande förståelse kanutnyttjas för att identifiera nödvändiga kemiska modifieringar på cellulosan för att överföraresultaten till storskalig produktion av hållbar elektronik. Initialt studerades den molekyläraoch övermolekylära strukturen hos PEDOT:PSS komplex med en kombination avmolekylärdynamiska (MD) simuleringar och experimentella undersökningar. För det andrastuderades växelverkan mellan cellulosa och PEDOT:PSS, och det visade sig möjligt attidentifiera de faktorer som kontrollerar denna växelverkan. Dessa kunskaper användes sedanför att molekylärt förklara hur dessa material fundamentalt växelverkar med varandra.Nanocellulosa, särskilt cellulosa nanofibriller (CNF) har varit en del av biobaserade ledandekompositer. Nanofibrilleringsprocessen är dock kostnads- och energikrävande. Dessutom ärPEDOT:PSS en dyr polymer. Därför användes i detta arbete kemiskt modifierade fibrer föratt förbättra interaktionen mellan cellulosa och PEDOT:PSS (för att minska kostnaderna),och för att förbereda fiberbaserad bioelektronik och energilagringsenheter. Storskaligproduktion av energilagringspapper demonstrerades också med kemiskt modifierade fibreroch faktorer som påverkar bearbetningen av dessa material identifierades.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 71
Series
TRITA-CBH-FOU ; 2022:55
Keywords
Cellulose nanofibrils, PEDOT:PSS, chemically-modified cellulose fibers, fundamental interactions, bioelectronics, energy storage, conductive paper production, large-scale production
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-321659 (URN)978-91-8040-405-1 (ISBN)
Public defence
2022-12-16, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Vinnova
Note

QC 2022-11-21. Embargo godkänt av Mikael Lindström, skolchef CBH.

Available from: 2022-11-21 Created: 2022-11-19 Last updated: 2023-12-16Bibliographically approved
Brooke, R., Lay, M., Jain, K., Francon, H., Say, M. G., Belaineh, D., . . . Berggren, M. (2022). Nanocellulose and PEDOT:PSS composites and their applications. Polymer Reviews, 1-41
Open this publication in new window or tab >>Nanocellulose and PEDOT:PSS composites and their applications
Show others...
2022 (English)In: Polymer Reviews, ISSN 1558-3724, p. 1-41Article in journal (Refereed) Published
Abstract [en]

The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics. 

Place, publisher, year, edition, pages
Informa UK Limited, 2022
Keywords
PEDOT, nanocellulose, composites, cellulose, conductive polymers
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321340 (URN)10.1080/15583724.2022.2106491 (DOI)000842101900001 ()2-s2.0-85136111219 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, GMT14-0058
Note

QC 20221114

Available from: 2022-11-11 Created: 2022-11-11 Last updated: 2022-11-14Bibliographically approved
Isacsson, P., Jain, K., Fall, A., Chauve, V., Hajian, A., Granberg, H., . . . Wågberg, L. (2022). Production of energy-storage paper electrodes using a pilot-scale paper machine. Journal of Materials Chemistry A, 10(40), 21579-21589
Open this publication in new window or tab >>Production of energy-storage paper electrodes using a pilot-scale paper machine
Show others...
2022 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 40, p. 21579-21589Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321339 (URN)10.1039/d2ta04431e (DOI)000859988400001 ()2-s2.0-85140059550 (Scopus ID)
Funder
Vinnova, 2016-05193
Note

QC 20221114

Available from: 2022-11-11 Created: 2022-11-11 Last updated: 2022-11-19Bibliographically approved
Jain, K., Reid, M. S., Larsson, P. A. & Wågberg, L. (2021). On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydrate Polymers, 260, Article ID 117818.
Open this publication in new window or tab >>On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors
2021 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 260, article id 117818Article in journal (Refereed) Published
Abstract [en]

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Cellulose, QCM-D, Adsorption, Colloidal probe-AFM, Adhesion
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-292592 (URN)10.1016/j.carbpol.2021.117818 (DOI)000629284700002 ()33712162 (PubMedID)2-s2.0-85101376679 (Scopus ID)
Note

QC 20210414

Available from: 2021-04-14 Created: 2021-04-14 Last updated: 2022-11-19Bibliographically approved
Jain, K., Mehandzhiyski, A. Y., Zozoulenko, I. & Wågberg, L. (2021). PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. Journal of Colloid and Interface Science, 584, 57-66
Open this publication in new window or tab >>PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential
2021 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 584, p. 57-66Article in journal (Refereed) Published
Abstract [en]

PEDOT:PSS is the most widely used conducting polymer in organic and printed electronics. PEDOT:PSS films have been extensively studied to understand the morphology, ionic and electronic conductivity of the polymer. However, the polymer dispersion, which is used to cast or spin coat the films, is not well characterized and not well understood theoretically. Here, we study in detail the particle morphology, size, charge density and zeta potential (z-potential) by coarse-grained MD simulations and dynamic light scattering (DLS) measurements, for different pH levels and ionic strengths. The PEDOT:PSS particles were found to be 12 nm–19 nm in diameter and had a z-potential of −30 mV to −50 mV when pH was changed from 1.7 to 9, at an added NaCl concentration of 1 mM, as measured by DLS. These values changed significantly with changing pH and ionic strength of the solution. The charge density of PEDOT:PSS particles was also found to be dependent on pH and ionic strength. Besides, the distribution of different ions (PSS−, PEDOT+, Na+, Cl−) present in the solution is simulated to understand the particle morphology and molecular origin of z-potential in PEDOT:PSS dispersion. The trend in change of particle size, charge density and z- potential with changing pH and ionic strength are in good agreement between the simulations and experiments. Our results show that the molecular model developed in this work represents very well the PEDOT:PSS nano-particles in aqueous dispersion. With this study, we hope to provide new insight and an in-depth understanding of the morphology and z-potential evolution in PEDOT:PSS dispersion.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
PEDOT:PSS, nanocellulose, QCM, adhesion
National Category
Paper, Pulp and Fiber Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-294443 (URN)10.1016/j.jcis.2020.09.070 (DOI)000600391700006 ()33059231 (PubMedID)2-s2.0-85092391644 (Scopus ID)
Funder
Vinnova
Note

QC 20210518

Available from: 2021-05-17 Created: 2021-05-17 Last updated: 2022-11-19Bibliographically approved
Jain, K.3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics.
Open this publication in new window or tab >>3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics
(English)Manuscript (preprint) (Other academic)
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321502 (URN)
Note

QC 20221129

Available from: 2022-11-16 Created: 2022-11-16 Last updated: 2022-11-29Bibliographically approved
Jain, K. The effect of chemically modifed cellulose fibers on the structure and properties of composites with PEDOT:PSS.
Open this publication in new window or tab >>The effect of chemically modifed cellulose fibers on the structure and properties of composites with PEDOT:PSS
(English)Manuscript (preprint) (Other academic)
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321571 (URN)
Note

QC 20221129

Available from: 2022-11-17 Created: 2022-11-17 Last updated: 2022-11-29Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9113-8413

Search in DiVA

Show all publications