kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (6 of 6) Show all publications
Lapandic, D. (2024). Disturbance-Aware Motion Planning and Control of Unmanned Aerial and Surface Vehicles. (Doctoral dissertation). KTH Royal Institute of Technology
Open this publication in new window or tab >>Disturbance-Aware Motion Planning and Control of Unmanned Aerial and Surface Vehicles
2024 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

This thesis concerns motion planning and control of underactuated unmanned aerial and surface vehicles with special attention to disturbances.  In the first part of the thesis, we examine trajectory tracking using Prescribed Performance Control (PPC) for the classes of underactuated aerial and surface vehicles, assuming that the model parameters are unknown. Due to the underactuation, the original PPC methodology is redesigned to accommodate the specifics of the considered underactuated dynamical systems. We prove the stability of the proposed control schemes and support them with numerical simulations on the quadrotor and boat models. Furthermore, we propose enhancements to the Kinodynamic Motion Planning via Funnel Control (KDF) framework. The kinodynamic motion planning is based on the Rapidly-exploring Random Trees (RRT) algorithm, and our improvements are in the optimization-based generation of smooth, collision-free trajectories using B-splines.Real-world experiments were conducted for the surface vehicles and tested the advantages of the proposed enhancements to KDF. The second part of the thesis is devoted to the rendezvous problem of the autonomous landing of a quadrotor on a boat based on distributed Model Predictive Control (MPC) algorithms. We propose an algorithm that assumes a minimal exchange of information between the agents, which is the rendezvous location, and an update rule to maintain the recursive feasibility of the landing. Moreover, a convergence proof is presented without enforcing the terminal set constraints.  Finally, we investigate a leader-follower framework and present an algorithm for multiple follower agents to land autonomously on the landing platform attached to the leader. An agent is equipped with a trajectory predictor to handle the cases of communication loss and avoid inter-agent collisions. The algorithm is tested in a simulation scenario with the simultaneous landing of multiple agents. %and a real-world scenario of the detect-and-avoid problem with two UAVs.

In the third part of the thesis, we examine the usage of the disturbance models and methods to refine them using available data and sensory measurements iteratively.Contraction-based control methods enable safety guarantees for unmanned aerial vehicles with respect to the disturbance-aware plans generated by MPC augmented with disturbance models. Disturbance models are inferred by data-driven identification and learning and further refined using adaptive control methods.The exploration-exploitation algorithm is presented for learning previously unseen disturbances.Finally, the framework is tested in a simulation scenario of the autonomous landing of a UAV on a surface vehicle.

Abstract [sv]

I denna avhandling studerar vi rörelseplanering och reglering av under-aktuerade obemannade luft- och ytfarkoster med särskild fokus på störningsundertryckning.

I den första delen av avhandlingen undersöker vi banföljning med hjälp av föreskriven prestandareglering (PPC) för en klass av under-aktuerade luft- och ytfarkoster med okända  modellparametrar. På grund av under-aktuering modifieras den ursprungliga PPC-metodiken för att anpassas till  under-aktuerade dynamiska system. Vi bevisar stabilitet för motsvarande återkopplade system och utvärderar  dem med hjälp av numeriska simuleringar av quadrotor- och båtmodeller. Vi föreslår en förbättringing av kinodynamisk rörelseplanering via ett tratt-regleringsramverk (KDF). Den kinodynamiska rörelseplaneringen är baserad på en snabbt utforskande slumpträdsalgoritm (RRT), och de föreslagna förbättringar ligger i optimeringsbaserade generering av jämna kollisionsfria banor med hjälp av B-splines. Motsvarande algoritmer och  föreslagna förbättringar av KDF utvärderas genom riktiga experiment på fysiska ytfarkoster.

Den andra delen av avhandlingen ägnas åt rendezvousproblem för autonom landning av en quadrotor på en båt baserat på distribuerad modellprediktivreglering (MPC). Vi föreslår en algoritm som förutsätter ett minimalt informationsutbyte mellan agenterna, vilket endast är själva rendezvousplatsen, och en uppdateringsregel för att upprätthålla den rekursiva genomförbarheten vid landningen. Vi presenterar ett konvergensbevis utan att använda oss av sluttillståndsbegränsningar. Dessutom undersöker vi ett ledar-följarramverk och presenter en algoritm för flera följar-agenter att landa autonomt på en landningsplattform som är kopplad till ledaren. Varje agent är utrustad med en banprediktor för att hantera eventuell kommunikationsförlust och undvikande av  kollisioner mellan agenterna. Algoritmen testas i ett simuleringsscenario för gemensam landning av flera agenter.

I den tredje delen av avhandlingen undersöker vi användningen av störnings\-modeller och iterativa metoder för att förbättra dem med hjälp av tillgänglig data och sensor-mätningar. Kontraktionsbaserade reglermetoder möjliggör säkerhetsgarantier för obemannade luftfarkoster med avseende på de störningsmedvetna planerna som genereras av MPC kompletterad med störningsmodeller. Störningsmodeller härleds genom datadriven identifiering och inlärning och förfinas ytterligare med hjälp av adaptiva reglermetoder. Upptäckt-och-utnyttjande algoritmen presenteras för inlärning av tidigare oönskade störningar. Slutligen testas ramverket i ett simuleringsscenario för autonom landning av en UAV på en ytfarkost.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. xx, 181
Series
TRITA-EECS-AVL ; 2024:58
Keywords
Unmanned Aerial Vehicles (UAVs), Unmanned Surface Vehicles (USVs), Disturbance-Aware Motion Planning, Underactuated Systems, Prescribed Performance Control (PPC), Trajectory Tracking, Quadrotor, Kinodynamic Motion Planning, Rapidly-exploring Random Trees (RRT), Kinodynamic Motion Planning via Funnel Control (KDF), B-splines, Distributed Model Predictive Control, Autonomous Landing, Rendezvous Problem, Collision Avoidance, Adaptive Control, Contraction-Based Control, Disturbance Models, Autonomous Landing on Surface Vehicles
National Category
Control Engineering
Research subject
Electrical Engineering; Computer Science
Identifiers
urn:nbn:se:kth:diva-352181 (URN)978-91-8040-977-3 (ISBN)
Public defence
2024-09-13, https://kth-se.zoom.us/w/66286084434, F3, Teknikringen 76, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20240826

Available from: 2024-08-26 Created: 2024-08-23 Last updated: 2024-08-26Bibliographically approved
Lapandic, D., Verginis, C., Dimarogonas, D. V. & Wahlberg, B. (2024). Kinodynamic Motion Planning via Funnel Control for Underactuated Unmanned Surface Vehicles. IEEE Transactions on Control Systems Technology, 32(6), 2114-2125
Open this publication in new window or tab >>Kinodynamic Motion Planning via Funnel Control for Underactuated Unmanned Surface Vehicles
2024 (English)In: IEEE Transactions on Control Systems Technology, ISSN 1063-6536, E-ISSN 1558-0865, Vol. 32, no 6, p. 2114-2125Article in journal (Refereed) Published
Abstract [en]

We develop an algorithm to control an underactuated unmanned surface vehicle (USV) using kinodynamic motion planning with funnel control (KDF). KDF has two key components: motion planning used to generate trajectories with respect to kinodynamic constraints, and funnel control, also referred to as prescribed performance control (PPC), which enables trajectory tracking in the presence of uncertain dynamics and disturbances. We extend PPC to address the challenges posed by underactuation and control input saturation present on the USV. The proposed scheme guarantees stability under user-defined prescribed performance functions where model parameters and exogenous disturbances are unknown. Furthermore, we present an optimization problem to obtain smooth, collision-free trajectories while respecting kinodynamic constraints. We deploy the algorithm on a USV and verify its efficiency in real-world open-water experiments.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-352180 (URN)10.1109/tcst.2024.3396027 (DOI)001218626900001 ()2-s2.0-85192732380 (Scopus ID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationWallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20240906

Available from: 2024-08-23 Created: 2024-08-23 Last updated: 2025-02-11Bibliographically approved
Lapandic, D., Xie, F., Verginis, C. K., Chung, S.-J., Dimarogonas, D. V. & Wahlberg, B. (2024). Meta-Learning Augmented MPC for Disturbance-Aware Motion Planning and Control of Quadrotors. IEEE Control Systems Letters, 8, 3045-3050
Open this publication in new window or tab >>Meta-Learning Augmented MPC for Disturbance-Aware Motion Planning and Control of Quadrotors
Show others...
2024 (English)In: IEEE Control Systems Letters, E-ISSN 2475-1456, Vol. 8, p. 3045-3050Article in journal (Refereed) Published
Abstract [en]

A major challenge in autonomous flights is unknown disturbances, which can jeopardize safety and cause collisions, especially in obstacle-rich environments. This letter presents a disturbance-aware motion planning and control framework for autonomous aerial flights. The framework is composed of two key components: a disturbance-aware motion planner and a tracking controller. The motion planner consists of a predictive control scheme and an online-adapted learned disturbance model. The tracking controller, developed using contraction control methods, ensures safety bounds on the quadrotor's behavior near obstacles with respect to the motion plan. The algorithm is tested in simulations with a quadrotor facing strong crosswind and ground-induced disturbances.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Adaptation models, Predictive models, Metalearning, Quadrotors, Planning, Trajectory, Autonomous aerial vehicles, Safety, Artificial neural networks, Prediction algorithms, Nonlinear dynamical systems, robust control, adaptive control, multi-layer neural network, data-driven modeling, predictive control, motion planning, real-time systems, robots, autonomous systems
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-358789 (URN)10.1109/LCSYS.2024.3520023 (DOI)001389514200003 ()2-s2.0-85212580665 (Scopus ID)
Note

QC 20250121

Available from: 2025-01-21 Created: 2025-01-21 Last updated: 2025-01-21Bibliographically approved
Lapandic, D. (2023). Trajectory Tracking and Prediction-Based Coordination of Underactuated Unmanned Vehicles. (Licentiate dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Trajectory Tracking and Prediction-Based Coordination of Underactuated Unmanned Vehicles
2023 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

In this thesis, we study trajectory tracking and prediction-based control of underactuated unmanned aerial and surface vehicles.  In the first part of the thesis, we examine the trajectory tracking using prescribed performance control (PPC) assuming that the model parameters are unknown. Moreover, due to the underactuation the original PPC is redesigned to accommodate for the specifics of the considered underactuated systems. We prove the stability of the proposed control schemes and support it with numerical simulations on the quadrotor and boat models. Furthermore, we propose enhancements to kinodynamic motion-planning via funnel control (KDF) framework that are based on rapidly-exploring random tree (RRT) algorithm and B-splines to generate the smooth trajectories and track them with PPC. We conducted real-world experiments and tested the advantages of the proposed enhancements to KDF. The second part of the thesis is devoted to the rendezvous problem of autonomous landing of a quadrotor on a boat based on distributed model predictive control (MPC) algorithms. We propose an algorithm that assumes minimal exchange of information between the agents, which is the rendezvous location, and an update rule to maintain the recursive feasibility of the landing. Moreover, we present a convergence proof without enforcing the terminal set constraints.  Finally, we investigated a leader-follower framework and presented an algorithm for multiple follower agents to land autonomously on the landing platform attached to the leader. An agent is equipped with a trajectory predictor to handle the cases of communication loss and avoid the inter-agent collisions. The algorithm is tested in a simulation scenario with the described challenges and the numerical results support the theoretical findings.

Abstract [sv]

I denna avhandling studerar vi banspårning och prediktionsbaserad styrning av underaktuerade obemannade luft- och ytfarkoster. I den första delen av avhandlingen undersöker vi banspårningen med hjälp av föreskriven prestationskontroll (PPC) förutsatt att modellparametrarna är okända. På grund av underaktueringen i systemen vi betraktar har den ursprungliga PPC:n dessutom designats om för att specifikationerna för dessa system. Vi bevisar att de föreslagna regulatorerna stabiliserar systemet och validerar dem med numeriska simuleringar på både quadrotor- och båtmodellen. Dessutom föreslår vi förbättringar av kinodynamisk rörelseplanering via ramverk för trattkontroll (KDF) som är baserade på algoritmen för snabbutforskande slumpmässiga träd (RRT) och B-splines för att generera släta banor och spåra dem med PPC. Vi genomförde fysikaliska experiment och validerade fördelarna med de föreslagna förbättringarna av KDF. Den andra delen av avhandlingen ägnas åt mötesproblemet med autonom landning av en quadrotor på en båt baserat på algoritmer för distribuerad modell-prediktiv styrning (MPC). Vi föreslår en algoritm som förutsätter ett minimalt utbyte av information mellan agenterna, nämligen mötesplatsen, och en uppdateringsregel för att upprätthålla den rekursiva genomförbarheten av landningen. Dessutom presenterar vi ett konvergensbevis utan att upprätthålla begränsningar i slutuppsättningen. Slutligen undersökte vi ett ledare-följare ramverk och presenterade en algoritm där flera följaragenter kan autonomt landa på en plattform som sitter fast i ledaren. En agent är utrustad med en banprediktor för att hantera fall av kommunikationsbortfall samt för att undvika kollision med andra agenter. Algoritmen testas i ett scenario med de beskrivna utmaningarna och de numeriska resultaten överensstämmer med de teoretiska resultaten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 137
Series
TRITA-EECS-AVL ; 2023:27
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-325653 (URN)978-91-8040-530-0 (ISBN)
Presentation
2023-05-04, Zoom: https://kth-se.zoom.us/j/65613619913, D3, Lindstedtsvägen 9, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20230412

Available from: 2023-04-12 Created: 2023-04-11 Last updated: 2024-08-26Bibliographically approved
Lapandic, D., Verginis, C., Dimarogonas, D. V. & Wahlberg, B. (2022). Robust Trajectory Tracking for Underactuated Quadrotors with Prescribed Performance. In: 2022 IEEE 61st Conference on Decision and Control (CDC): . Paper presented at 61st IEEE Conference on Decision and Control, CDC 2022, Cancun, Mexico, 6-9 December 2022 (pp. 3351-3358). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Robust Trajectory Tracking for Underactuated Quadrotors with Prescribed Performance
2022 (English)In: 2022 IEEE 61st Conference on Decision and Control (CDC), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 3351-3358Conference paper, Published paper (Refereed)
Abstract [en]

We propose a control protocol based on the prescribed performance control (PPC) methodology for a quadro-tor unmanned aerial vehicle (UAV). Quadrotor systems belong to the class of underactuated systems for which the original PPC methodology cannot be directly applied. We introduce the necessary design modifications to stabilize the considered system with prescribed performance. The proposed control protocol does not use any information of dynamic model parameters or exogenous disturbances. Furthermore, the stability analysis guarantees that the tracking errors remain inside of designer-specified time-varying functions, achieving prescribed performance independent from the control gains’ selection. Finally, simulation results verify the theoretical results.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-325652 (URN)10.1109/CDC51059.2022.9992897 (DOI)000948128102125 ()2-s2.0-85147001541 (Scopus ID)
Conference
61st IEEE Conference on Decision and Control, CDC 2022, Cancun, Mexico, 6-9 December 2022
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20230412

Available from: 2023-04-11 Created: 2023-04-11 Last updated: 2023-05-03Bibliographically approved
Lapandic, D., Persson, L., Dimarogonas, D. V. & Wahlberg, B. (2021). Aperiodic Communication for MPC in Autonomous Cooperative Landing. In: IFAC PAPERSONLINE: . Paper presented at 7th IFAC Conference on Nonlinear Model Predictive Control (NMPC), JUL 11-14, 2021, Bratislava, SLOVAKIA (pp. 113-118). Elsevier BV, 54(6)
Open this publication in new window or tab >>Aperiodic Communication for MPC in Autonomous Cooperative Landing
2021 (English)In: IFAC PAPERSONLINE, Elsevier BV , 2021, Vol. 54, no 6, p. 113-118Conference paper, Published paper (Refereed)
Abstract [en]

This paper investigates the rendezvous problem for the autonomous cooperative landing of an unmanned aerial vehicle (UAV) on an unmanned surface vehicle (USV). Such heterogeneous agents, with nonlinear dynamics, are dynamically decoupled but share a common cooperative rendezvous task. The underlying control scheme is based on distributed Model Predictive Control (MPC). The main contribution is a rendezvous algorithm with an online update rule of the rendezvous location. The algorithm only requires the agents to exchange information when they can not guarantee to rendezvous. Hence, the exchange of information occurs aperiodically, which reduces the necessary communication between the agents. Furthermore, we prove that the algorithm guarantees recursive feasibility. The simulation results illustrate the effectiveness of the proposed algorithm applied to the problem of autonomous cooperative landing.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Autonomous cooperative landing, Nonlinear predictive control, Model predictive and optimization-based control, Distributed nonlinear control, UAVs, Tracking
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-303386 (URN)10.1016/j.ifacol.2021.08.532 (DOI)000694653900017 ()2-s2.0-85117942446 (Scopus ID)
Conference
7th IFAC Conference on Nonlinear Model Predictive Control (NMPC), JUL 11-14, 2021, Bratislava, SLOVAKIA
Note

QC 20211015

Available from: 2021-10-15 Created: 2021-10-15 Last updated: 2022-06-25Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9706-8073

Search in DiVA

Show all publications