Open this publication in new window or tab >>Show others...
2021 (English)In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 17, no 7, p. 794-800Article in journal (Refereed) Published
Abstract [en]
Structures that are periodic on a microscale in three dimensions are abundant in nature, for example, in the cellular arrays that make up living tissue. Such structures can also be engineered, appearing in smart materials(1-4), photonic crystals(5), chemical reactors(6), and medical(7) and biomimetic(8) technologies. Here we report that fluid-fluid interfacial energy drives three-dimensional (3D) structure emergence in a micropillar scaffold. This finding offers a rapid and scalable way of transforming a simple pillar scaffold into an intricate 3D structure that is periodic on a microscale, comprising a solid microscaffold, a dispersed fluid and a continuous fluid. Structures generated with this technique exhibit a set of unique features, including a stationary internal liquid-liquid interface. Using this approach, we create structures with an internal liquid surface in a regime of interest for liquid-liquid catalysis. We also synthesize soft composites in solid, liquid and gas combinations that have previously not been shown, including actuator materials with temperature-tunable microscale pores. We further demonstrate the potential of this method for constructing 3D materials that mimic tissue with an unprecedented level of control, and for microencapsulating human cells at densities that address an unresolved challenge in cell therapy.
Place, publisher, year, edition, pages
Springer Nature, 2021
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-296638 (URN)10.1038/s41567-021-01204-4 (DOI)000631498200002 ()2-s2.0-85103112237 (Scopus ID)
Note
QC 20220329
2021-06-102021-06-102025-02-09Bibliographically approved