kth.sePublications
Change search
Link to record
Permanent link

Direct link
Shi, Ziyi
Publications (10 of 18) Show all publications
Jin, Y., Liu, H., Yang, H., Siriwardena Thanaweera Achchige, D. P., Subasi, Y., Gond, R., . . . Yang, W. (2025). Development of biomass pyrolysis bio-oil as a renewable surface engineering agent for bio-based hard carbon production. Journal of Power Sources, 641, Article ID 236824.
Open this publication in new window or tab >>Development of biomass pyrolysis bio-oil as a renewable surface engineering agent for bio-based hard carbon production
Show others...
2025 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 641, article id 236824Article in journal (Refereed) Published
Abstract [en]

Sodium-ion batteries (SIBs) are emerging as a promising alternative to lithium-ion batteries due to their potential for efficient and sustainable energy storage. Thus, the demand for high-performance battery materials with a sustainable supply chain, particularly hard carbon (HC) as the primary anode material for SIBs, is rapidly increasing. This study focuses on enhancing the production and electrochemical performance of HC products by leveraging Sweden's abundant forestry resources and advanced biomass refining processes. Specifically, we propose a novel HC production process that compresses sawdust-derived biocarbon with bio-oil derived from the same pyrolysis process to produce HC with improved properties, where the bio-oil serves as both a binder and a surface engineering agent for the biocarbon. This approach effectively modifies surface defects, leading to increased initial Coulombic efficiency (ICE), reaching values of 90 % in half-cell tests. Moreover, laboratory measurements and Life Cycle Assessment (LCA) results quantified that this production method achieves nearly 50 % higher HC yields and reduces greenhouse gas (GHG) emissions by approximately 20 % compared to the conventional production method. As a result, this offers a potentially more sustainable and economically viable solution for advancing the SIB anode material production.

Place, publisher, year, edition, pages
Elsevier BV, 2025
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-362046 (URN)10.1016/j.jpowsour.2025.236824 (DOI)001456247100001 ()2-s2.0-105000536182 (Scopus ID)
Note

QC 20250404

Available from: 2025-04-03 Created: 2025-04-03 Last updated: 2025-05-06Bibliographically approved
Jin, Y., Liu, S., Shi, Z., Wang, S., Wen, Y., Zaini, I. N., . . . Yang, W. (2024). A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass. Energy, 295, Article ID 131029.
Open this publication in new window or tab >>A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass
Show others...
2024 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 295, article id 131029Article in journal (Refereed) Published
Abstract [en]

This study aims to improve the quality and yield of bio-oil produced from ex-situ catalytic pyrolysis of lignocellulosic biomass (sawdust) using a combination of stage catalysts with Al-MCM-41, HZSM-5, and ZrO2. The research employed various methods, including thermogravimetric analysis (TGA), differential scanning calorimetry, bench-scale experiments, and process simulations to analyze the kinetics, thermodynamics, products, and energy flows of the catalytic upgrading process. The introduction of ZrO2 enhances the yield of monoaromatic hydrocarbons (MAHs) in heavy organics. Compared with the dual-catalyst case, the MAHs yield escalates by approximately 344% at a catalyst ratio of 1:3:0.25. Additionally, GC-MS data indicate that the incorporation of ZrO2 promotes the deoxygenation reaction of the guaiacol compound and the oligomerization reactions of PAHs. The integration of ZrO2 as the third catalyst enhances the yield of heavy organics significantly, achieving 16.85% at a catalyst ratio of 1:3:1, which increases by nearly 35.6% compared to the dual-catalyst case. Also, the addition of ZrO2 as the third catalyst enhanced the energy distribution in heavy organics. These findings suggest that the combination of these catalysts improves the fuel properties and yields of the bio-oil.

Place, publisher, year, edition, pages
Elsevier Ltd, 2024
Keywords
Bio-oil, Process simulation, Pyrolysis, Staged catalyst, TGA
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-344932 (URN)10.1016/j.energy.2024.131029 (DOI)001224241400001 ()2-s2.0-85188595056 (Scopus ID)
Note

QC 20240524

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-05-24Bibliographically approved
Shi, Z., Jin, Y., Han, T., Yang, H., Gond, R., Subasi, Y., . . . Yang, W. (2024). Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts. Scientific Reports, 14(1), Article ID 3966.
Open this publication in new window or tab >>Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts
Show others...
2024 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 14, no 1, article id 3966Article in journal (Refereed) Published
Abstract [en]

Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution–precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g−1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Bio-graphite, Biochar, Catalytic graphitization, Lithium-ion battery, Pyrolysis
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-344002 (URN)10.1038/s41598-024-54509-8 (DOI)38368434 (PubMedID)2-s2.0-85185354006 (Scopus ID)
Note

QC 20240229

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2024-02-29Bibliographically approved
Yang, H., Nurdiawati, A., Gond, R., Chen, S., Wang, u., Tang, B., . . . Han, T. (2024). Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes. International journal of hydrogen energy, 49, 459-471
Open this publication in new window or tab >>Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes
Show others...
2024 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 49, p. 459-471Article in journal (Other academic) Published
Abstract [en]

The global Sustainable Development Goals highlight the necessity for affordable and clean energy, designated as SDG7. A sustainable and feasible biorefinery concept is proposed for the carbon-negative utilization of biomass waste for affordable H2 and battery anode material production. Specifically, an innovative tandem biocarbon + NiAlO + biocarbon catalyst strategy is constructed to realize a complete reforming of biomass pyro-vapors into H2+CO (as a mixture). The solid residues from pyrolysis are upgraded into high-quality hard carbon (HCs), demonstrating potential as sodium ion battery (SIBs) anodes. The product, HC-1600-6h, exhibited great electrochemical performance when employed as (SIBs) anodes (full cell: 263 Wh/kg with ICE of 89%). Ultimately, a comprehensive process is designed, simulated, and evaluated. The process yields 75 kg H2, 169 kg HCs, and 891 kg captured CO2 per ton of biomass achieving approx. 100% carbon and hydrogen utilization efficiencies. A life cycle assessment estimates a biomass valorization process with negative-emissions (−0.81 kg CO2/kg-biomass, reliant on Sweden wind electricity). A techno-economic assessment forecasts a notably profitable process capable of co-producing affordable H2 and hard carbon battery anodes. The payback period of the process is projected to fall within two years, assuming reference prices of 13.7 €/kg for HCs and 5 €/kg for H2. The process contributes to a novel business paradigm for sustainable and commercially viable biorefinery process, achieving carbon-negative valorization of biomass waste into affordable energy and materials.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Biomass, Pyrolysis, Catalytic reforming, Biochar, Syngas, Auger
National Category
Energy Engineering Materials Chemistry
Research subject
Energy Technology; Chemical Engineering; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-339172 (URN)10.1016/j.ijhydene.2023.09.096 (DOI)001132794800001 ()2-s2.0-85172247785 (Scopus ID)
Funder
Vinnova, 2021-03735
Note

QC 20231106

Available from: 2023-11-03 Created: 2023-11-03 Last updated: 2025-02-25Bibliographically approved
Yang, H., Zaini, I. N., Pan, R., Jin, Y., Wang, Y., Li, L., . . . Han, T. (2024). Distributed electrified heating for efficient hydrogen production. Nature Communications, 15(1), Article ID 3868.
Open this publication in new window or tab >>Distributed electrified heating for efficient hydrogen production
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 3868Article in journal (Refereed) Published
Abstract [en]

This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.

Place, publisher, year, edition, pages
Nature Research, 2024
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-346497 (URN)10.1038/s41467-024-47534-8 (DOI)001216484200045 ()38719793 (PubMedID)2-s2.0-85192354703 (Scopus ID)
Note

QC 20240517

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2025-02-26Bibliographically approved
Jin, Y., Yang, H., Guo, S., Shi, Z., Han, T., Gond, R., . . . Yang, W. (2023). Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst. Journal of Cleaner Production, 404, Article ID 136926.
Open this publication in new window or tab >>Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst
Show others...
2023 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 404, article id 136926Article in journal (Refereed) Published
Abstract [en]

Carbon and H2 recoveries from plastic waste enable high value-added utilizations of plastic waste while mini-mizing its GHG emissions. The objective of this study is to explore the use of a metal-free biocarbon catalyst for waste plastic pyrolysis and in-line catalytic cracking to produce H2-rich gases and carbon. The results show that the biocarbon catalyst exhibits a good catalytic effect and stability for various plastic wastes. Increasing the C/P ratio from 0 to 2, induce an increase in the conversion rate of C and H in plastics to carbon and H2 from 57.1% to 68.7%, and from 22.7% to 53.5%, respectively. Furthermore, a carbon yield as high as 580.6 mg/gplastic and an H2 yield as high as 68.6 mg/gplastic can be obtained. The hierarchical porous structure with tortuous channels of biocarbon extends the residence time of pyrolysis volatiles in the high-temperature catalytic region and thereby significantly promotes cracking reactions.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Biocarbon catalyst, Plastic pyrolysis, Hydrogen, Catalytic cracking
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-327174 (URN)10.1016/j.jclepro.2023.136926 (DOI)000971689600001 ()2-s2.0-85151275989 (Scopus ID)
Note

QC 20230524

Available from: 2023-05-24 Created: 2023-05-24 Last updated: 2023-11-03Bibliographically approved
Shi, Z., Jin, Y., Svanberg, R., Han, T., Minidis, A. B. E., Ann-Sofi, K. D., . . . Yang, W. (2023). Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up. Energy, 273, Article ID 127288.
Open this publication in new window or tab >>Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up
Show others...
2023 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 273, article id 127288Article in journal (Refereed) Published
Abstract [en]

The use of catalytic fast pyrolysis (CFP) of biomass to produce high-quality bio-oils as potential substitutes for conventional fuels plays an essential role in the decarbonization of the world. In this study, continuous CFP tests of sawdust using three commercial-ready catalysts were performed. The overall objective is to screen appropriate catalysts and catalyst loading amounts for further commercialization and upgrading by evaluating the quality of the organic fraction bio-oils and clarifying the relationship between the hydrogen-to-carbon atomic effective (H/ Ceff) ratio and bio-oil yield. The results displayed that, owing to a cracking effect of the catalyst, all catalytic cases had higher H/Ceff ratios and larger relative area percentages of hydrocarbons determined by NMR. Thermogravimetric analysis reveals that, compared to non-catalytic bio-oils, catalytic bio-oils showed more distillates in the diesel range. Increasing the catalyst-loading amount also showed the same effect. Overall, all bio-oil products from catalytic cases had H/Ceff ratios higher than 0.6, indicating the production of promising oil for hydrodeoxygenation. By analyzing and fitting the data from this work and comparing with the literature, it could be concluded that its yield would decrease as the bio-oil product quality increases (the H/Ceff ratios increase).

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Biomass, Bio-oil, Catalytic fast pyrolysis, The hydrogen-to-carbon atomic effective ratio
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-326644 (URN)10.1016/j.energy.2023.127288 (DOI)000965087900001 ()2-s2.0-85150893147 (Scopus ID)
Note

QC 20230509

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2023-05-09Bibliographically approved
Jin, Y., Shi, Z., Han, T., Yang, H., Asfaw, H. D., Gond, R., . . . Yang, W. (2023). From Waste Biomass to Hard Carbon Anodes: Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries. Processes, 11(3), Article ID 764.
Open this publication in new window or tab >>From Waste Biomass to Hard Carbon Anodes: Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries
Show others...
2023 (English)In: Processes, ISSN 2227-9717, Vol. 11, no 3, article id 764Article, review/survey (Refereed) Published
Abstract [en]

Sodium-ion batteries (SIBs) serve as the most promising next-generation commercial batteries besides lithium-ion batteries (LIBs). Hard carbon (HC) from renewable biomass resources is the most commonly used anode material in SIBs. In this contribution, we present a review of the latest progress in the conversion of waste biomass to HC materials, and highlight their application in SIBs. Specifically, the following topics are discussed in the review: (1) the mechanism of sodium-ion storage in HC, (2) the HC precursor's sources, (3) the processing methods and conditions of the HCs production, (4) the impact of the biomass types and carbonization temperature on the carbon structure, and (5) the effect of various carbon structures on electrochemical performance. Data from various publications have been analyzed to uncover the relationship between the processing conditions of biomass and the resulting structure of the final HC product, as well as its electrochemical performance. Our results indicate the existence of an ideal temperature range (around 1200 to 1400 degrees C) that enhances the formation of graphitic domains in the final HC anode and reduces the formation of open pores from the biomass precursor. This results in HC anodes with high storage capacity (>300 mAh/g) and high initial coulombic efficiency (ICE) (>80%).

Place, publisher, year, edition, pages
MDPI AG, 2023
Keywords
waste biomass, hard carbon, sodium ion batteries, sodium-ion storage, anode material
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-326634 (URN)10.3390/pr11030764 (DOI)000967839300001 ()2-s2.0-85151727689 (Scopus ID)
Note

QC 20230509

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2023-05-09Bibliographically approved
Wang, S., Wang, Y., Shi, Z., Sun, K., Wen, Y., Niedzwiecki, L., . . . Wang, C. H. (2023). Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes. Communications Chemistry, 6(1), Article ID 273.
Open this publication in new window or tab >>Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
Show others...
2023 (English)In: Communications Chemistry, E-ISSN 2399-3669, Vol. 6, no 1, article id 273Article in journal (Refereed) Published
Abstract [en]

Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-341602 (URN)10.1038/s42004-023-01077-z (DOI)001122502600001 ()2-s2.0-85179331588 (Scopus ID)
Note

QC 20231227

Available from: 2023-12-27 Created: 2023-12-27 Last updated: 2024-02-29Bibliographically approved
Wang, S., Shi, Z., Jin, Y., Zaini, I. N., Li, Y., Tang, C., . . . Jönsson, P. G. (2022). A machine learning model to predict the pyrolytic kinetics of different types of feedstocks. Energy Conversion and Management, 260, 115613, Article ID 115613.
Open this publication in new window or tab >>A machine learning model to predict the pyrolytic kinetics of different types of feedstocks
Show others...
2022 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 260, p. 115613-, article id 115613Article in journal (Refereed) Published
Abstract [en]

An in-depth knowledge of pyrolytic kinetics is vital for understanding the thermal decomposition process. Numerous experimental studies have investigated the kinetic performance of the pyrolysis of different raw materials. An accurate prediction of pyrolysis kinetics could substantially reduce the efforts of researchers and decrease the cost of experiments. In this work, a model to predict the mean values of model-free activation energies of pyrolysis for five types of feedstocks was successfully constructed using the random forest machine learning method. The coefficient of determination of the fitting result reached a value as high as 0.9964, which indicates significant potential for making a quick initial pyrolytic kinetic estimation using machine learning methods. Specifically, from the results of a partial dependence analysis of the lignocellulose-type feedstock, the atomic ratios of H/C and O/C were found to have negative correlations with the pyrolytic activation energies. However, the effect of the ash content on the activation energy strongly depended on the organic component species present in the lignocellulose feedstocks. This work confirms the possibility of predicting model-free pyrolytic activation energies by utilizing machine learning methods, which can improve the efficiency and understanding of the kinetic analysis of pyrolysis for biomass and fossil investigations.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Pyrolysis, Machine learning, Random forest, Kinetics, Prediction
National Category
Computer Sciences Bioprocess Technology
Identifiers
urn:nbn:se:kth:diva-313738 (URN)10.1016/j.enconman.2022.115613 (DOI)000801918600002 ()2-s2.0-85128461436 (Scopus ID)
Note

QC 20220613

Available from: 2022-06-13 Created: 2022-06-13 Last updated: 2022-06-25Bibliographically approved
Organisations

Search in DiVA

Show all publications