kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (7 of 7) Show all publications
El Jamal, S., Mishchenko, Y. & Jonsson, M. (2023). Uranium nitride stability in aqueous solutions under anoxic and oxidizing conditions – Expected behaviour under repository conditions in comparison to alternative nuclear fuel materials. Journal of Nuclear Materials, 578, Article ID 154334.
Open this publication in new window or tab >>Uranium nitride stability in aqueous solutions under anoxic and oxidizing conditions – Expected behaviour under repository conditions in comparison to alternative nuclear fuel materials
2023 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 578, article id 154334Article in journal (Refereed) Published
Abstract [en]

Uranium nitride (UN) has good thermo-physical properties which makes it a promising fuel candidate for generation IV nuclear reactors. In addition to its performance as a nuclear fuel, it is important to elucidate every novel fuel material in terms of its stability in aqueous environments. This can be highly relevant under certain accident scenarios and also for the safety assessment of geological repositories for used nuclear fuel. The fuel matrix contains the fission products and heavier actinides formed under normal reactor operation. Upon dissolution of the fuel matrix, these highly radiotoxic constitiuents can be released. In this work UN has been studied under aqueous conditions similar to a geological repository for spent nuclear fuel. For UN, direct hydrolysis as well as oxidative dissolution induced by water radiolysis can lead to degradation of the fuel matrix. The latter process leads to formation of oxidative radiolysis products of which H2O2 has been shown to be the most important oxidant for other fuel materials. The experiments show that hydrolysis of UN in aqueous solutions and exposure to solutions containing H2O2 resulted in matrix dissolution. However, this oxidative dissolution induced by H2O2 is more prominent than hydrolysis in water with or without added HCO3−. The dissolution of UN was compared with other nuclear fuel materials (UC, UO2 and U3Si2) under the same conditions. The results show that UN is the second most reactive fuel material towards H2O2. However, the so-called dissolution yield is the lowest for UN. The rationale for the observed differences in reactivity are discussed.

Place, publisher, year, edition, pages
Elsevier B.V., 2023
Keywords
Different uranium based materials, H O 2 2, Oxidative dissolution, Stability
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-330961 (URN)10.1016/j.jnucmat.2023.154334 (DOI)000949014600001 ()2-s2.0-85148685265 (Scopus ID)
Note

QC 20230704

Available from: 2023-07-04 Created: 2023-07-04 Last updated: 2023-07-04Bibliographically approved
El Jamal, S. (2022). Stability of Alternative Nuclear Fuel Materials in Aqueous Systems. (Doctoral dissertation). KTH Royal Institute of Technology
Open this publication in new window or tab >>Stability of Alternative Nuclear Fuel Materials in Aqueous Systems
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear power produces a large portion of the electricity worldwide. It has been the largest low-carbon energy source for more than 30 years and has played an essential role in the security of energy supplies for many countries. However, despite its advantages, its future is unknown mainly because of accidents that can happen under reactor operation and the high radioactivity of the fuel after use. Therefore, Generation IV nuclear power has been introduced as it promises a sustainable and economical way of producing energy and reduces some of the risks observed in current reactors. UC and UN have advantageous properties compared to conventional UO2-based fuel which makes them promising fuel candidates for Generation IV nuclear reactors. Even though the fuel for Generation IV reactors is planned to be reprocessed, unexpected political decisions may change these plans, and the used fuel could end up in a geological repository. Therefore, the behavior of these new fuel materials must be understood in accident scenarios in reactors as well as under deep geological repository conditions. The radioactivity of the used fuel will induce radiolysis of water that comes in contact with it. This will lead to oxidative dissolution of the fuel and this is one of the potential routes for radionuclide release in the environment.

In the first part of this thesis, UC and UN have been investigated in aqueous solutions under anoxic conditions, and under the influence of external γ-radiation and H2O2, the latter mimicking the impact of α-radiolysis. The hydrolysis of these materials in aqueous systems resulted in matrix dissolution which is not observed for UO2. The oxidative dissolution induced by H2O2 is more prominent than hydrolysis in water with or without added HCO3- where higher concentrations of dissolved uranium can be detected. In addition, the differences in reactivity are discussed for these materials and H2O2 is most reactive towards UN followed by UC and finally UO2, yet the dissolution yield is the lowest for UN. The change in UC and UN behavior with consecutive exposure to H2O2 was attributed to a change in surface reactivity where catalytic decomposition of H2O2 becomes possible.  As it was observed for H2O2 additions, radiation induced oxidative dissolution also dominates over hydrolysis. Unexpectedly high concentrations of H2O2 were observed in the irradiated systems. This was found to be due to formation of nano-particulate studtite that could not be separated from the solutions samples by filtration. Hence, it turned out to be impossible to determine the free U(VI) and H2O2 concentrations in these systems.

Finally, the stability of pure and ZrN containing UN pellet fragments was investigated in aqueous system under external γ-radiation or H2O2 exposure. The behavior of these pellet fragments was similar to the UN powder where the dissolution of uranium was enhanced under oxidizing conditions if compared with anoxic conditions (hydrolysis). Consecutive exposures of UN pellet fragments to H2O2 showed a change in surface reactivity. This change is attributed to the formation of an oxide layer on the surface of UN, as UO2 is less reactive towards H2O2 and UO2 pellets display lower dissolution yields than UN pellets. In addition, the impact of ZrN as a stabilizing additive to UN pellets was studied. The addition of ZrN to UN is expected to stabilize the UN matrix and thus render a more accident tolerant fuel. Interestingly, it was shown that under oxidizing conditions, ZrN did not have a significant impact on the stability of UN pellets in aqueous systems

Abstract [sv]

Kärnkraft står för en stor del av den globala elproduktionen. Det har varit den största energikällan med låga koldioxidutsläpp i över 30 år och har i många länder spelat en viktig roll för att trygga energiförsörjningen. Trots dess fördelar är kärnkraftens framtida roll osäker, främst på grund av de risker som det radioaktiva kärnbränslet medför. Delvis därför har fjärde generationens reaktorkoncept introducerats. Dessa koncept innebär ett hållbart och ekonomiskt sätt att producera energi och samtidigt minskade risker jämfört med dagens kärnreaktorer. UC och UN har fördelaktiga egenskaper jämfört med konventionellt UO2-baserat bränsle vilket gör dem till lovande bränslekandidater för fjärde generationens kärnreaktorer. En fördel med dessa bränslematerial (som har en högre densitet med avseende på klyvbart material) är att det är ekonomiskt fördelaktigt eftersom färre avstängningar kommer att krävas för bränslebyte. Även om det använda GenIV-bränslet planeras att upparbetas, kan oväntade politiska beslut ändra dessa planer, och det använda bränslet kan hamna i ett geologiskt  djupförvar. Därför måste beteendet hos dessa nya bränslematerial kunna förutspås i samband med olycksscenarier i reaktorer såväl som under geologiska djupförvarsförvarsförhållanden. Radioaktiviteten hos det använda bränslet kommer att inducera radiolys av vatten som kommer i kontakt med det. Detta möjliggör oxidativ upplösning av bränslet vilket är en av de potentiella vägarna för utsläpp av radionuklider till omgivningen. 

I denna avhandling har stabiliteten för UC och UN undersökts i vattenlösningar under anoxiska förhållanden och under påverkan av extern γ-strålning och H2O2 (den huvudsakliga produkten vid α-radiolys av vatten). Hydrolysen av dessa material i vattenbaserade system resulterade i matrisupplösning vilket inte är fallet för UO2. Den oxidativa upplösningen som induceras av H2O2 dominerar över hydrolys i vatten med eller utan tillsatt HCO3-. Dessutom diskuteras skillnaderna i reaktivitet mot H2O2 för dessa material där UN har högst reaktivitet följt av UC och slutligen UO2. Upplösningsutbytet (mängd upplöst uran per konsumerad H2O2) är dock lägst för UN. Förändringen i reaktivitet för UC och UN vi flera på varandra följande exponeringar för H2O2 tillskrevs en förändring i ytreaktivitet där katalytisk nedbrytning av H2O2 blir möjlig (pga bildning av oxid).

Även extern γ-bestrålning inducerar upplösning av UN och UC i betydligt högre omfattning än hydrolys. Vid γ-bestrålning av vattenlösningar innehållande 10 mM HCO3- och pulver av UC, UN och UO2 observerade oväntat höga halter av H2O2. Detta visade sig bero på att nanopartiklar av studtit hade bildats och dessa partiklar kunde inte separeras från provlösningen genom filtrering. Närvaron av dessa partiklar gör det omöjligt att bestämma de fria U(VI)- och H2O2-koncentrationerna.

Slutligen undersöktes stabiliteten hos rena och ZrN-innehållande UN-kutsfragment i vattensystem under extern γ-bestrålning eller H2O2-exponering. Kutsfragmenten uppvisade ett beteende snarlikt UN-pulver där upplösningen av uran ökade under oxiderande förhållanden jämfört med under anoxiska förhållanden (hydrolys). Konsekutiva exponeringar av UN-kutsfragment för H2O2 ledde till en förändring i ytreaktivitet. Denna förändring tillskrivs bildandet av ett oxidskikt på ytan av UN, eftersom UO2 är mindre reaktivt mot H2O2 och UO2-kutsar uppvisar lägre upplösningsutbyten än UN-kutsar. Dessutom har effekten av ZrN som tillsats till UN-kutsar studerats. Tillsats av ZrN till UN förväntas stabilisera UN-matrisen och därmed göra bränslet mer olyckstolerant. Intressant nog visades det under oxiderande förhållanden, att ZrN inte hade en signifikant inverkan på stabiliteten hos UN-kutsar i vatten.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 70
Series
TRITA-CBH-FOU ; 2022:64
Keywords
UC, UN, UO2, gamma radiolysis, oxidative dissolution, H2O2, studtite, additive, UC, UN, UO2, gammaradiolys, oxidativ upplösning, H2O2, studtite, additiv
National Category
Physical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-321858 (URN)978-91-8040-429-7 (ISBN)
Public defence
2022-12-20, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-25

Available from: 2022-11-25 Created: 2022-11-25 Last updated: 2022-11-25Bibliographically approved
El Jamal, S., Johnsson, M. & Jonsson, M. (2021). On the Stability of Uranium Carbide in Aqueous Solution-Effects of HCO3- and H2O2. ACS Omega, 6(37), 24289-24295
Open this publication in new window or tab >>On the Stability of Uranium Carbide in Aqueous Solution-Effects of HCO3- and H2O2
2021 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 6, no 37, p. 24289-24295Article in journal (Refereed) Published
Abstract [en]

Uranium carbide (UC) is a candidate fuel material for future Generation IV nuclear reactors. As part of a general safety assessment, it is important to understand how fuel materials behave in aqueous systems in the event of accidents or upon complete barrier failure in a geological repository for spent nuclear fuel. As irradiated nuclear fuel is radioactive, it is important to consider radiolysis of water as a process where strongly oxidizing species can be produced. These species may display high reactivity toward the fuel itself and thereby influence its integrity. The most important radiolytic oxidant under repository conditions has been shown to be H2O2. In this work, we have studied the dissolution of uranium upon exposure of UC powder to aqueous solutions containing HCO3- and H2O2, separately and in combination. The experiments show that UC dissolves quite readily in aqueous solution containing 10 mM HCO3- and that the presence of H2O2 increases the dissolution further. UC also dissolves in pure water after the addition of H2O2, but more slowly than in solutions containing both HCO3- and H2O2. The experimental results are discussed in view of possible mechanisms.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2021
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-304792 (URN)10.1021/acsomega.1c04581 (DOI)000699954000063 ()34568706 (PubMedID)2-s2.0-85115611823 (Scopus ID)
Note

QC 20211117

Available from: 2021-11-17 Created: 2021-11-17 Last updated: 2022-11-25Bibliographically approved
El Jamal, S., Li, J., Mishchenko, Y., Johnsson, M. & Jonsson, M.Effects of Gamma Radiation on Oxidative Dissolution of Alternative Nuclear Fuel Materials in Aqueous Bicarbonate Solutions.
Open this publication in new window or tab >>Effects of Gamma Radiation on Oxidative Dissolution of Alternative Nuclear Fuel Materials in Aqueous Bicarbonate Solutions
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-321819 (URN)
Note

QC 20221129

Available from: 2022-11-24 Created: 2022-11-24 Last updated: 2023-09-04Bibliographically approved
El Jamal, S., Li, J., Mishchenko, Y. & Jonsson, M.Effects of Gamma Radiation on Oxidative Dissolution of Alternative Nuclear Fuel Materials in Aqueous Bicarbonate Solutions.
Open this publication in new window or tab >>Effects of Gamma Radiation on Oxidative Dissolution of Alternative Nuclear Fuel Materials in Aqueous Bicarbonate Solutions
(English)Manuscript (preprint) (Other academic)
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-335231 (URN)
Note

QC 20230906

Available from: 2023-09-03 Created: 2023-09-03 Last updated: 2023-09-06Bibliographically approved
El Jamal, S., Mishchenko, Y. & Jonsson, M.Stability of Pure and ZrN-containing UN Pellets in Aqueous Systems – Impact of Ionizing Radiation and Radiolytic Oxidants.
Open this publication in new window or tab >>Stability of Pure and ZrN-containing UN Pellets in Aqueous Systems – Impact of Ionizing Radiation and Radiolytic Oxidants
(English)Manuscript (preprint) (Other academic)
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-321820 (URN)
Note

QC 20221129

Available from: 2022-11-24 Created: 2022-11-24 Last updated: 2022-11-29Bibliographically approved
El Jamal, S., Mishchenko, Y. & Jonsson, M. Uranium Nitride Stability in Aqueous Solutions under Anoxic and Oxidizing Conditions– Expected Behaviour under Repository Conditions in Comparison to Alternative Nuclear Fuel Materials.
Open this publication in new window or tab >>Uranium Nitride Stability in Aqueous Solutions under Anoxic and Oxidizing Conditions– Expected Behaviour under Repository Conditions in Comparison to Alternative Nuclear Fuel Materials
(English)In: Article in journal (Other academic) Submitted
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-321818 (URN)
Note

QC 20221129

Available from: 2022-11-24 Created: 2022-11-24 Last updated: 2022-11-29Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-8553-1908

Search in DiVA

Show all publications