Transparent Wood Biocomposites for Sustainable Development
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Sustainable wood nanotechnologies that combine optical transmittance and mechanical performance are interesting for new functionalities utilizing transparency. Wood is a sophisticated bio-based material with a natural hierarchical, anisotropic and porous structure. The wood cellular structure can be functionalized at the micro and nanostructural level for the design of advanced functional materials. In recent years, the development of transparent wood biocomposites derived from delignified wood substrates have gained interest because they combine attractive structural properties with optical functionality. Nanostructural tailoring of transparent wood biocomposites is required to improve optical transmittance, mechanical performance, and to add new functionalities. In this thesis, environmentally friendly material components and green chemical processes have been developed for the fabrication of nanostructurally tailored transparent wood biocomposites.
Mesoporous delignified wood substrates with preserved microstructure and cellulose microfibril alignment in the cell wall are used as reinforcement in transparent wood biocomposites. Chemical functionalization strategies using renewable maleic, itaconic and succinic anhydrides have been explored for molecular and nanostructural tailoring of delignified cell walls. Cyclic anhydride functionalization results in high degree of esterification, reduces moisture content in the wood substrate, improves monomer diffusion within the cell wall, and further enables interface tailoring at the molecular scale with possibility for covalent attachment with polymer matrix. Transparent wood biocomposites were prepared by methyl methacrylate monomer impregnation followed by in situ polymerization within the chemically modified wood substrates. The anhydride-functionalized transparent wood biocomposites have improved wood-polymer interfacial interactions, resulting in improved optical and mechanical properties. Moreover, a bio-based polymer matrix was designed from renewable limonene oxide and acrylic acid for the fabrication of fully bio-based transparent wood biocomposites. The bio-based monomer can diffuse into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. The bio-based transparent wood biocomposites are nanostructured and demonstrate superior optical transmittance, low haze, and excellent mechanical performance.
Nanostructural functionalization using phase-change materials is also demonstrated for the design of transparent wood biocomposites that combine thermal energy storage, tunable optical properties, and load bearing functions. Molecular and nanoscale interactions in transparent wood biocomposites are critical as they contribute to the favorable distribution of the phase-change material across the wood structure, which is a key component in optimizing thermal energy storage capacity. Bio-based design of transparent wood is also explored for thermal energy storage applications. Low environmental impact is achieved by combining the use of bio-based resources with green processing routes. Environmentally friendly transparent wood nanotechnologies can compete with petroleum-based plastics in applications such as load-bearing transparent panel and energy saving.
Abstract [sv]
Hållbara nanoteknologiska trämaterial som kombinerar optisk transparens med mekanisk prestanda är av intresse för nya applikationer där transparens nyttjas. Trä är ett sofistikerat biobaserat material med en naturligt hierarkisk struktur som är anisotrop och porös. Avancerade funktionella material kan framställas genom funktionalisering av träets cellstruktur på mikro- och nanonivå. Utvecklingen av transparenta träbiokompositer, som framställs från delignifierat trä, har under de senaste åren väckt intresse då materialen kombinerar attraktiva strukturella egenskaper med optiska funktioner. Strukturell kontroll på nanonivå är nödvändig för förbättrad optisk transmittans, mekanisk prestanda samt för att tillägga nya egenskaper. I denna avhandling har miljövänliga materialkomponenter och gröna kemiska processer använts för att strukturellt skräddarsy transparenta träkompositer på nanonivå.
Mesoporösa och delignifierade träsubstrat med bevarad mikrostruktur och orientering av cellulosamikrofibriller i cellväggen används som förstärkning i transparenta träkompositer. Strategier för kemisk funktionalisering med förnybara malein-, itakon- och bärnstenssyraanhydrider har undersökts för att skräddarsy delignifierade cellväggar. Funktionalisering med cykliska anhydrider resulterar i hög förestringsgrad som minskar fukthalten i träsubstratet, förbättrar monomerdiffusion inom cellväggarna samt möjliggör ytterligare anpassning av gränsytor för kovalent bindning med polymermatris. Transparenta träkompositer framställdes först genom impregnering med metylmetakrylatmonomer följt av in situ polymerisation i de kemiskt modifierade träsubstraten. Transparenta träbiokompositer framställda från träsubstrat som funktionaliserats med anhydrider uppvisar förbättrade gränsytor mellan trä och polymer, vilket resulterar i förbättrade optiska och mekaniska egenskaper. En biobaserad polymermatris från förnybar limonenoxid och akrylsyra utvecklades sedan för att framställa helt biobaserade transparenta träkompositer. Den biobaserade monomeren kan diffundera in i cellväggen, och polymerfasen är både av överensstämmande brytningsindex med- och kovalent bundet till träsubstratet. De biobaserade transparenta träkompositerna är nanostrukturerade och uppvisar förbättrad optisk transmittans, lägre ljusspridning och utmärkt mekanisk prestanda.
Transparenta träkompositer som kombinerar värmeenergilagring med reversibla optiska egenskaper och mekanisk prestanda har dessutom framställts genom funktionalisering med fasförändringsmaterial på nanonivå. Interaktioner på molekylär- och nanonivå är kritiska i transparenta träkompositer eftersom de påverkar fördelningen av fasförändringsmaterialet i trästrukturen, vilket är essentiellt för optimerad lagringskapacitet av termisk energi. Ett biobaserat alternativ har även utvecklats för lagring av värmeenergi i transparenta träkompositer. Genom att kombinera användningen av biobaserade resurser med gröna förädlingsprocesser kunde miljöpåverkan minskas. Miljövänliga och transparenta nanoteknologiska träkompositer kan konkurrera med petroleumbaserad plast i applikationer som bärande transparenta paneler och inom energibesparing.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. , p. 75
Series
TRITA-CBH-FOU ; 2022:4
Keywords [en]
Transparent wood, biocomposite, eco-friendly, nanotechnology, bio-based polymer, green chemistry, functionalization, thermal energy storage
Keywords [sv]
Transparent trä, biokomposit, miljövänligt, nanoteknik, biobaserad polymer, grön kemi, funktionalisering, lagring av värmeenergi
National Category
Materials Engineering Polymer Technologies Wood Science Composite Science and Engineering
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-306718ISBN: 978-91-8040-112-8 (print)OAI: oai:DiVA.org:kth-306718DiVA, id: diva2:1626002
Public defence
2022-02-11, F3, Lindstedtsvägen 26, Zoom: https://kth-se.zoom.us/j/66395812787, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg FoundationEU, European Research Council, 742733
Note
QC 2022-01-18
2022-01-182022-01-102024-05-21Bibliographically approved
List of papers