kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent Wood Biocomposites for Sustainable Development
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-6017-1774
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sustainable wood nanotechnologies that combine optical transmittance and mechanical performance are interesting for new functionalities utilizing transparency. Wood is a sophisticated bio-based material with a natural hierarchical, anisotropic and porous structure. The wood cellular structure can be functionalized at the micro and nanostructural level for the design of advanced functional materials. In recent years, the development of transparent wood biocomposites derived from delignified wood substrates have gained interest because they combine attractive structural properties with optical functionality. Nanostructural tailoring of transparent wood biocomposites is required to improve optical transmittance, mechanical performance, and to add new functionalities. In this thesis, environmentally friendly material components and green chemical processes have been developed for the fabrication of nanostructurally tailored transparent wood biocomposites.

Mesoporous delignified wood substrates with preserved microstructure and cellulose microfibril alignment in the cell wall are used as reinforcement in transparent wood biocomposites. Chemical functionalization strategies using renewable maleic, itaconic and succinic anhydrides have been explored for molecular and nanostructural tailoring of delignified cell walls. Cyclic anhydride functionalization results in high degree of esterification, reduces moisture content in the wood substrate, improves monomer diffusion within the cell wall, and further enables interface tailoring at the molecular scale with possibility for covalent attachment with polymer matrix. Transparent wood biocomposites were prepared by methyl methacrylate monomer impregnation followed by in situ polymerization within the chemically modified wood substrates. The anhydride-functionalized transparent wood biocomposites have improved wood-polymer interfacial interactions, resulting in improved optical and mechanical properties. Moreover, a bio-based polymer matrix was designed from renewable limonene oxide and acrylic acid for the fabrication of fully bio-based transparent wood biocomposites. The bio-based monomer can diffuse into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. The bio-based transparent wood biocomposites are nanostructured and demonstrate superior optical transmittance, low haze, and excellent mechanical performance.

Nanostructural functionalization using phase-change materials is also demonstrated for the design of transparent wood biocomposites that combine thermal energy storage, tunable optical properties, and load bearing functions. Molecular and nanoscale interactions in transparent wood biocomposites are critical as they contribute to the favorable distribution of the phase-change material across the wood structure, which is a key component in optimizing thermal energy storage capacity. Bio-based design of transparent wood is also explored for thermal energy storage applications. Low environmental impact is achieved by combining the use of bio-based resources with green processing routes. Environmentally friendly transparent wood nanotechnologies can compete with petroleum-based plastics in applications such as load-bearing transparent panel and energy saving.

Abstract [sv]

Hållbara nanoteknologiska trämaterial som kombinerar optisk transparens med mekanisk prestanda är av intresse för nya applikationer där transparens nyttjas. Trä är ett sofistikerat biobaserat material med en naturligt hierarkisk struktur som är anisotrop och porös. Avancerade funktionella material kan framställas genom funktionalisering av träets cellstruktur på mikro- och nanonivå. Utvecklingen av transparenta träbiokompositer, som framställs från delignifierat trä, har under de senaste åren väckt intresse då materialen kombinerar attraktiva strukturella egenskaper med optiska funktioner. Strukturell kontroll på nanonivå är nödvändig för förbättrad optisk transmittans, mekanisk prestanda samt för att tillägga nya egenskaper. I denna avhandling har miljövänliga materialkomponenter och gröna kemiska processer använts för att strukturellt skräddarsy transparenta träkompositer på nanonivå.

Mesoporösa och delignifierade träsubstrat med bevarad mikrostruktur och orientering av cellulosamikrofibriller i cellväggen används som förstärkning i transparenta träkompositer. Strategier för kemisk funktionalisering med förnybara malein-, itakon- och bärnstenssyraanhydrider har undersökts för att skräddarsy delignifierade cellväggar. Funktionalisering med cykliska anhydrider resulterar i hög förestringsgrad som minskar fukthalten i träsubstratet, förbättrar monomerdiffusion inom cellväggarna samt möjliggör ytterligare anpassning av gränsytor för kovalent bindning med polymermatris. Transparenta träkompositer framställdes först genom impregnering med metylmetakrylatmonomer följt av in situ polymerisation i de kemiskt modifierade träsubstraten. Transparenta träbiokompositer framställda från träsubstrat som funktionaliserats med anhydrider uppvisar förbättrade gränsytor mellan trä och polymer, vilket resulterar i förbättrade optiska och mekaniska egenskaper. En biobaserad polymermatris från förnybar limonenoxid och akrylsyra utvecklades sedan för att framställa helt biobaserade transparenta träkompositer. Den biobaserade monomeren kan diffundera in i cellväggen, och polymerfasen är både av överensstämmande brytningsindex med- och kovalent bundet till träsubstratet. De biobaserade transparenta träkompositerna är nanostrukturerade och uppvisar förbättrad optisk transmittans, lägre ljusspridning och utmärkt mekanisk prestanda.

Transparenta träkompositer som kombinerar värmeenergilagring med reversibla optiska egenskaper och mekanisk prestanda har dessutom framställts genom funktionalisering med fasförändringsmaterial på nanonivå. Interaktioner på molekylär- och nanonivå är kritiska i transparenta träkompositer eftersom de påverkar fördelningen av fasförändringsmaterialet i trästrukturen, vilket är essentiellt för optimerad lagringskapacitet av termisk energi. Ett biobaserat alternativ har även utvecklats för lagring av värmeenergi i transparenta träkompositer. Genom att kombinera användningen av biobaserade resurser med gröna förädlingsprocesser kunde miljöpåverkan minskas. Miljövänliga och transparenta nanoteknologiska träkompositer kan konkurrera med petroleumbaserad plast i applikationer som bärande transparenta paneler och inom energibesparing.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. , p. 75
Series
TRITA-CBH-FOU ; 2022:4
Keywords [en]
Transparent wood, biocomposite, eco-friendly, nanotechnology, bio-based polymer, green chemistry, functionalization, thermal energy storage
Keywords [sv]
Transparent trä, biokomposit, miljövänligt, nanoteknik, biobaserad polymer, grön kemi, funktionalisering, lagring av värmeenergi
National Category
Materials Engineering Polymer Technologies Wood Science Composite Science and Engineering
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-306718ISBN: 978-91-8040-112-8 (print)OAI: oai:DiVA.org:kth-306718DiVA, id: diva2:1626002
Public defence
2022-02-11, F3, Lindstedtsvägen 26, Zoom: https://kth-se.zoom.us/j/66395812787, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg FoundationEU, European Research Council, 742733
Note

QC 2022-01-18

Available from: 2022-01-18 Created: 2022-01-10 Last updated: 2024-05-21Bibliographically approved
List of papers
1. Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites
Open this publication in new window or tab >>Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites
2020 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 22, p. 8012-8023Article in journal (Refereed) Published
Abstract [en]

Wood templates are promising biobased substrates that can be functionalized for controlled nanostructure, and the development of novel nanotechnologies. A sustainable, selective and versatile chemical functionalization platform for cellulosic wood templates is developed. Bulk wood templates are delignified using peracetic acid, and the nanoporous delignified wood templates are functionalized with cyclic anhydrides (maleic, itaconic and succinic) from renewable resources. The synthetic pathway uses solvent-free reaction conditions, short reaction times, and has possibilities for chemical recovery. Anhydrides become covalently attached inside the nanoporous wood cell wall and yields wood templates with lower moisture sorption, preserved nano- and ultrastructure, and high degree of esterification with carboxyl content as high as 3.93 mmol g−1. The functionalization platform enables interface tailoring at the molecular scale with possibility for further reaction and covalent modifications. This is demonstrated by the preparation of transparent wood biocomposites. The biocomposites exhibit controlled wood–polymer interfacial adhesion with high optical transmittance. The favorable interaction mechanisms at the cell wall level result in mechanically strong biocomposites.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2020
Keywords
Green modification, sustainable, functional material, transparent wood, biocomposites
National Category
Composite Science and Engineering Chemical Engineering Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-285900 (URN)10.1039/D0GC02768E (DOI)000589891500029 ()2-s2.0-85096574164 (Scopus ID)
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 20201116

Available from: 2020-11-12 Created: 2020-11-12 Last updated: 2022-06-25Bibliographically approved
2. High Performance, Fully Bio‐Based, and Optically Transparent Wood Biocomposites
Open this publication in new window or tab >>High Performance, Fully Bio‐Based, and Optically Transparent Wood Biocomposites
2021 (English)In: Advanced Science, E-ISSN 2198-3844Article in journal (Refereed) Published
Abstract [en]

The sustainable development of engineering biocomposites has been limited due to a lack of bio‐based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio‐based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is impregnated and readily polymerized in a delignified, succinylated wood substrate to form optically transparent biocomposites. The chemical structure of the limonene acrylate enables diffusion into the cell wall, and the polymer phase is both refractive index‐matched and covalently linked to the wood substrate. This results in nanostructured biocomposites combining an excellent optical transmittance of 90% at 1.2 mm thickness and a remarkably low haze of 30%, with a high mechanical performance (strength 174 MPa, Young's modulus 17 GPa). Bio‐based transparent wood holds great potential towards the development of sustainable wood nanotechnologies for structural applications, where transparency and mechanical performance are combined.

National Category
Polymer Chemistry Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-294211 (URN)10.1002/advs.202100559 (DOI)000646211500001 ()34194952 (PubMedID)
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 20210524

Available from: 2021-05-11 Created: 2021-05-11 Last updated: 2022-06-25Bibliographically approved
3. Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization
Open this publication in new window or tab >>Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization
2021 (English)In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 9, article id 682883Article in journal (Refereed) Published
Abstract [en]

The development of large, multifunctional structures from sustainable wood nanomaterials is challenging. The need to improve mechanical performance, reduce moisture sensitivity, and add new functionalities, provides motivation for nanostructural tailoring. Although existing wood composites are commercially successful, materials development has not targeted nano-structural control of the wood cell wall, which could extend the property range. For sustainable development, non-toxic reactants, green chemistry and processing, lowered cumulative energy requirements, and lowered CO2-emissions are important targets. Here, modified wood substrates in the form of veneer are suggested as nanomaterial components for large, load-bearing structures. Examples include polymerization of bio-based monomers inside the cell wall, green chemistry wood modification, and addition of functional inorganic nanoparticles inside the cell wall. The perspective aims to describe bio-based polymers and green processing concepts for this purpose, along with wood nanoscience challenges.

Place, publisher, year, edition, pages
Frontiers Media SA, 2021
Keywords
wood nanotechnology, biocomposite, nanocellulose, nanostructure, building material, biopolymer, nanocomposite
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-299116 (URN)10.3389/fchem.2021.682883 (DOI)000673612600001 ()34277566 (PubMedID)2-s2.0-85110674204 (Scopus ID)
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 20210803

Available from: 2021-08-03 Created: 2021-08-03 Last updated: 2022-06-25Bibliographically approved
4. Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance
Open this publication in new window or tab >>Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance
Show others...
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 22, p. 20465-20472Article in journal (Refereed) Published
Abstract [en]

Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized; also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (similar to 76 J g(-1)) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
Keywords
wood, encapsulation, phase-change material, energy storage, biocomposite
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-254507 (URN)10.1021/acsami.9b05525 (DOI)000470938500088 ()31062954 (PubMedID)2-s2.0-85066864916 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationEU, European Research Council, 742733
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2024-05-21Bibliographically approved
5. Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood
Open this publication in new window or tab >>Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
green chemistry, heat storage, LCA, nanotechnology, wood biocomposite
National Category
Engineering and Technology Polymer Technologies Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-306716 (URN)000956739300001 ()36970834 (PubMedID)2-s2.0-85150961640 (Scopus ID)
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 20211221

Available from: 2021-12-21 Created: 2021-12-21 Last updated: 2024-05-21

Open Access in DiVA

fulltext(8648 kB)1031 downloads
File information
File name FULLTEXT01.pdfFile size 8648 kBChecksum SHA-512
cf0d4186b6cb78d03aa717567d517084ddee10cd685c66db1ea90a7995d422aa08926fc2e5034a88a0cb4fff3e3567d87cf525687cca2d215290958ce71126aa
Type fulltextMimetype application/pdf

Authority records

Montanari, Celine

Search in DiVA

By author/editor
Montanari, Celine
By organisation
BiocompositesWallenberg Wood Science Center
Materials EngineeringPolymer TechnologiesWood ScienceComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1034 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2640 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf