Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Centralized Control Plane for Passive Optical Top-of-Rack Interconnects in Data Centers
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.ORCID iD: 0000-0001-6704-6554
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
2016 (English)In: 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings, IEEE conference proceedings, 2016, 7841655Conference paper, Published paper (Refereed)
Abstract [en]

To efficiently handle the fast growing traffic inside data centers, several optical interconnect architectures have been recently proposed. However, most of them are targeting the aggregation and core tiers of the data center network, while relying on conventional electronic top-of-rack (ToR) switches to connect the servers inside the rack. The electronic ToR switches pose serious limitations on the data center network in terms of high cost and power consumption. To address this problem, we recently proposed a passive optical top-of-rack interconnect architecture, where we focused on the data plane design utilizing simple passive optical components to interconnect the servers within the rack. However, an appropriate control plane tailored for this architecture is needed to be able to analyze the network performance, e.g., packet delay, drop rate, etc., and also obtain a holistic network design for our passive optical top-of-rack interconnect, which we refer to as POTORI. To fill in this gap, this paper proposes the POTORI control plane design which relies on a centralized rack controller to manage the communications inside the rack. To achieve high network performance in POTORI, we also propose a centralized medium access control (MAC) protocol and two dynamic bandwidth allocation (DBA) algorithms, namely Largest First (LF) and Largest First with Void Filling (LFVF). Simulation results show that POTORI achieves packet delays in the order of microseconds and negligible packet loss probability under realistic data center traffic scenarios.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2016. 7841655
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keyword [en]
Data center networks, Dynamic bandwidth allocation (DBA), Medium access control (MAC), Optical interconnect architectures
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-206391DOI: 10.1109/GLOCOM.2016.7841655ISI: 000401963301011Scopus ID: 2-s2.0-85015439339ISBN: 978-1-5090-1328-9 (print)OAI: oai:DiVA.org:kth-206391DiVA: diva2:1092319
Conference
59th IEEE Global Communications Conference, GLOBECOM 2016, Washington, United States, 4 December 2016 through 8 December 2016
Funder
Swedish Foundation for Strategic Research Swedish Research Council
Note

QC 20170503

Available from: 2017-05-02 Created: 2017-05-02 Last updated: 2017-06-20Bibliographically approved
In thesis
1. Passive Optical Top-of-Rack Interconnect for Data Center Networks
Open this publication in new window or tab >>Passive Optical Top-of-Rack Interconnect for Data Center Networks
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Optical networks offering ultra-high capacity and low energy consumption per bit are considered as a good option to handle the rapidly growing traffic volume inside data center (DCs). However, most of the optical interconnect architectures proposed for DCs so far are mainly focused on the aggregation/core tiers of the data center networks (DCNs), while relying on the conventional top-of-rack (ToR) electronic packet switches (EPS) in the access tier. A large number of ToR switches in the current DCNs brings serious scalability limitations due to high cost and power consumption. Thus, it is important to investigate and evaluate new optical interconnects tailored for the access tier of the DCNs.

We propose and evaluate a passive optical ToR interconnect (POTORI) architecture for the access tier. The data plane of the POTORI consists mainly of passive components to interconnect the servers within the rack as well as the interfaces toward the aggregation/core tiers. Using the passive components makes it possible to significantly reduce power consumption while achieving high reliability in a cost-efficient way.

Meanwhile, our proposed POTORI’s control plane is based on a centralized rack controller, which is responsible for coordinating the communications among the servers in the rack. It can be reconfigured by software-defined networking (SDN) operation. A cycle-based medium access control (MAC) protocol and a dynamic bandwidth allocation (DBA) algorithm are designed for the POTORI to efficiently manage the exchange of control messages and the data transmission inside the rack.

Simulation results show that under realistic DC traffic scenarios, the POTORI with the proposed DBA algorithm is able to achieve an average packet delay below 10 μs with the use of fast tunable optical transceivers. Moreover, we further quantify the impact of different network configuration parameters on the average packet delay. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 31 p.
Keyword
Optical communications, data center interconnects, MAC protocol, dynamic bandwidth allocation.
National Category
Engineering and Technology Communication Systems
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-206421 (URN)978-91-7729-387-3 (ISBN)
Presentation
2017-06-12, Ka-Sal C (Sal Sven-Olof Öhrvik), Electrum, Kistagången 16, Kista, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170503

Available from: 2017-05-09 Created: 2017-05-03 Last updated: 2017-08-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Wosinska, Lena

Search in DiVA

By author/editor
Cheng, YuxinFiorani, MatteoWosinska, LenaChen, Jiajia
By organisation
Communication Systems, CoS
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf