kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Caging Grasps of Rigid and Partially Deformable 3-D Objects With Double Fork and Neck Features
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0003-2965-2953
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0003-1114-6040
2016 (English)In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, no 6, p. 1479-1497Article in journal (Refereed) Published
Abstract [en]

Caging provides an alternative to point-contact-based rigid grasping, relying on reasoning about the global free configuration space of an object under consideration. While substantial progress has been made toward the analysis, verification, and synthesis of cages of polygonal objects in the plane, the use of caging as a tool for manipulating general complex objects in 3-D remains challenging. In this work, we introduce the problem of caging rigid and partially deformable 3-D objects, which exhibit geometric features we call double forks and necks. Our approach is based on the linking number-a classical topological invariant, allowing us to determine sufficient conditions for caging objects with these features even in the case when the object under consideration is partially deformable under a set of neck or double fork preserving deformations. We present synthesis and verification algorithms and demonstrations of applying these algorithms to cage 3-D meshes.

Place, publisher, year, edition, pages
2016. Vol. 32, no 6, p. 1479-1497
Keywords [en]
Cage, grasping, shape features
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-199500DOI: 10.1109/TRO.2016.2602374ISI: 000389849700012Scopus ID: 2-s2.0-85006017877OAI: oai:DiVA.org:kth-199500DiVA, id: diva2:1066483
Note

QC 20170118

Available from: 2017-01-18 Created: 2017-01-09 Last updated: 2025-02-07Bibliographically approved
In thesis
1. Path-Connectivity of the Free Space: Caging and Path Existence
Open this publication in new window or tab >>Path-Connectivity of the Free Space: Caging and Path Existence
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The notion of configuration space is a tool that allows to reason aboutan object’s mobility in a unified manner. The problem of verifying path non-existence can be considered as dual to path planning. The question here iswhether a body (a robot, a vehicle, or an object) can move between start andgoal configurations without colliding with obstacles. Caging is a notion fromrobotic manipulation that can be seen as a special case of this problem: anobject is caged when it cannot escape arbitrarily far from its initial position.In this thesis, we address the problems of caging and path non-existence indifferent settings. Firstly, we design a theoretical framework and verificationalgorithms for caging of three-dimensional partially-deformable objects withspecific global geometric features that can be described as narrow parts. Sec-ondly, we formulate and address the problem of herding by caging: given agroup of moving agents and a team of mobile robots, the task is to guide theagents to a predefined goal region without letting them escape at any mo-ment of time. Thirdly, we propose an algorithm for efficient approximationof three- and six-dimensional configuration spaces of arbitrary rigid objects.This approximation can be later used to identify caging configurations as wellas to verify path existence between given configurations. Finally, we reportour preliminary results on molecular caging screening. This project buildsupon our previous work on configuration space approximation.

Abstract [sv]

Begreppet konfigurationsrum är ett verktyg som gör det möjligt att motivera rörlighet av ett objekt på ett enhetligt sätt. Problemet med att verifiera icke-existens av möjliga vägar kan betraktas som dualt till vägplanering. Frå-gan vi studerar är om en kropp (en robot, ett fordon eller ett objekt) kan flyttamellan start- och målkonfigurationer utan att kollidera med hinder. Caging ärnett begrepp från robotmanipulation som kan ses som ett speciellt fall av dettaproblem: ett objekt är “caged” när det inte kan komma bort godtyckligt långtfrån sin ursprungliga position. I den här avhandlingen behandlar vi problemen med caging och icke-existens av vägar i olika aspekter. För det första utformar vi en teoretisk ram och verifieringsalgoritmer för caging av tredimensionella partiellt deformerbara objekt med specifika globala geometriska egenskapersom kan beskrivas som smala delar. För det andra formulerar och studerarvi herdingproblemet med hjälp av caging: givet en grupp rörliga agenter ochett team mobila robotar är uppgiften att styra agenterna till en fördefinieradmålregion utan att låta dem fly vid någon tidpunkt. För det tredje föreslår vi en algoritm för effektiv approximering av tre- och sexdimensionella konfigurationsrum av godtyckliga stela objekt. Denna approximation kan senareanvändas för att identifiera caging-konfigurationer såväl som att verifiera ex-istens av vägar mellan givna konfigurationer. Slutligen rapporterar vi vårapreliminära resultat på screening av molekylär caging. Detta projekt byggerpå vårt tidigare arbete med approximering av konfigurationsrum.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 29
Series
TRITA-EECS-AVL ; 2019:30
Keywords
Robotics, Manipulation, Caging
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-247985 (URN)978-91-7873-146-6 (ISBN)
Public defence
2019-04-24, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2019-04-02 Created: 2019-04-01 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Varava, AnastasiiaKragic, DanicaPokorny, Florian T.

Search in DiVA

By author/editor
Varava, AnastasiiaKragic, DanicaPokorny, Florian T.
By organisation
Computer Vision and Active Perception, CVAPCentre for Autonomous Systems, CAS
In the same journal
IEEE Transactions on robotics
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 703 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf