kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Joint channel estimation and pilot allocation in underlay cognitive MISO networks
(Signal Processing)ORCID iD: 0000-0003-2298-6774
2014 (English)In: 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), IEEE conference proceedings, 2014, p. 797-802Conference paper, Published paper (Refereed)
Abstract [en]

Cognitive radios have been proposed as agile technologies to boost the spectrum utilization. This paper tackles the problem of channel estimation and its impact on downlink transmissions in an underlay cognitive radio scenario. We consider primary and cognitive base stations, each equipped with multiple antennas and serving multiple users. Primary networks often suffer from the cognitive interference, which can be mitigated by deploying beamforming at the cognitive systems to spatially direct the transmissions away from the primary receivers. The accuracy of the estimated channel state information (CSI) plays an important role in designing accurate beamformers that can regulate the amount of interference. However, channel estimate is affected by interference. Therefore, we propose different channel estimation and pilot allocation techniques to deal with the channel estimation at the cognitive systems, and to reduce the impact of contamination at the primary and cognitive systems. In an effort to tackle the contamination problem in primary and cognitive systems, we exploit the information embedded in the covariance matrices to successfully separate the channel estimate from other users' channels in correlated cognitive single input multiple input (SIMO) channels. A minimum mean square error (MMSE) framework is proposed by utilizing the second order statistics to separate the overlapping spatial paths that create the interference. We validate our algorithms by simulation and compare them to the state of the art techniques.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2014. p. 797-802
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-163735DOI: 10.1109/IWCMC.2014.6906458Scopus ID: 2-s2.0-84908632301OAI: oai:DiVA.org:kth-163735DiVA, id: diva2:1082097
Conference
IWCMC
Note

QC 20170322

Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 218 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf