kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Challenges in applying fixed partial factors to rock engineering design
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-9835-7053
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-5372-7519
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-8152-6092
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-5243-4650
Show others and affiliations
2017 (English)In: Geotechnical Special Publication, ISSN 0895-0563, no 283, p. 384-393Article in journal (Refereed) Published
Abstract [en]

The Swedish national guidelines for design of the main structural support system in road and railway rock tunnels have been adjusted to cohere with Eurocode 7. In the design guidelines, the limit states that the designer should consider are specified. The main method to account for uncertainties in the Swedish guidelines is similar to the method preferred in Eurocode 7: the partial factor method. For each limit state, fixed partial factors retrieved from different sections of the Eurocodes are specified. However, fixed partial factors may not correspond to the same structural reliability for all design situations. In this paper, we show for a common design situation in rock engineering design how partial factors in theory should vary with design geometries and uncertainties. The derived partial factors are compared to the Eurocodes’ fixed values. We find that using fixed partial factors to ensure structural safety in these limit states might not be suitable. The implications are discussed along with suggestions of other more suitable methods to account for uncertainties in rock engineering design.

Place, publisher, year, edition, pages
Reston: American Society of Civil Engineers (ASCE), 2017. no 283, p. 384-393
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-204912DOI: 10.1061/9780784480700.037ISI: 000406412100037Scopus ID: 2-s2.0-85030456959OAI: oai:DiVA.org:kth-204912DiVA, id: diva2:1086776
Note

QC 20170419

Available from: 2017-04-04 Created: 2017-04-04 Last updated: 2025-02-09Bibliographically approved
In thesis
1. On reliability-based design of rock tunnel support
Open this publication in new window or tab >>On reliability-based design of rock tunnel support
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Tunneling involves large uncertainties. Since 2009, design of rock tunnels in European countries should be performed in accordance with the Eurocodes. The main principle in the Eurocodes is that it must be shown in all design situations that no relevant limit state is exceeded. This can be achieved with a number of different methods, where the most common one is design by calculation. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using limit state design methods, i.e. the partial factor method or reliability-based methods. The basic principle of the former is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with high enough probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent.

The aim of this licentiate thesis is to provide a review of the practical applicability of using reliability-based methods and the partial factor method in design of rock tunnel support. The review and the following discussion are based on findings from the cases studied in the appended papers. The discussion focuses on the challenges of applying fixed partial factors, as suggested by Eurocode, in design of rock tunnel support and some of the practical difficulties the engineer is faced with when applying reliability-based methods to design rock tunnel support.

The main conclusions are that the partial factor method (as defined in Eurocode) is not suitable to use in design of rock tunnel support, but that reliability-based methods have the potential to account for uncertainties present in design, especially when used within the framework of the observational method. However, gathering of data for statistical quantification of input variables along with clarification of the necessary reliability levels and definition of “failure” are needed.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. p. 52
Series
TRITA-JOB. LIC, ISSN 1650-951X ; 2033
Keywords
Rock engineering, reliability-based design, Eurocode 7, observational method, tunnel engineering, Bergmekanik, sannolikhetsbaserad dimensionering, Eurokod 7, observationsmetoden, tunnelbyggnation.
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-204919 (URN)978-91-7729-354-5 (ISBN)
Presentation
2017-05-18, B3, Brinellvägen 23, KTH-Campus, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20170407

Available from: 2017-04-07 Created: 2017-04-04 Last updated: 2025-02-09Bibliographically approved
2. Reliability-based design of rock tunnel support
Open this publication in new window or tab >>Reliability-based design of rock tunnel support
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since 2009, design of rock tunnels can be performed in accordance with the Eurocodes, which allows that different design methodologies are applied, such as design by calculation or design using the observational method. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using the partial factor method or reliability-based methods. The basic principle of both of these methods is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with sufficiently high probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent.The overall aim of this project has been to develop reliability-based methods for environmental and economic optimization of rock tunnel support, with a special focus on shotcrete support. To achieve this, this thesis aims to: (1) assess the applicability of the partial factor method and reliability-based methods for design of shotcrete support, exclusively or in combination with the observational method, (2) quantify the magnitude and uncertainty of the shotcrete’s input parameters, and (3) assess the influence from spatial variability on shotcrete’s load-bearing capacity and judge the correctness of the assumption that the load-bearing capacity of the support is governed by the mean values of its input parameters.The thesis shows that the partial factor method is not suitable, and in some cases not applicable, to use in design of rock tunnel support. Instead, the thesis presents a reliability-based design methodology for shotcrete in rock tunnels with respect to loose blocks between rockbolts and a design methodology for shotcrete lining based on a combination of the observational method and reliability-based methods. The presented design methodologies enable optimization of the shotcrete support and shotcrete lining by stringently accounting for uncertainties related to input data throughout the design process. The thesis also discusses the limited knowledge that we as an industry sometimes have in our calculation models and the clarifications that should be made in future revisions of the Eurocode related to target reliability and the definition of failure.

Abstract [sv]

Sedan 2009 kan dimensionering av bergtunnlar utföras i enlighet med Eurokoderna, vilka tillåter att olika dimensioneringsmetoder tillämpas, såsom dimensionering genom beräkning eller dimensionering med observationsmetoden. För att ta hänsyn till osäkerheter föreskriver Eurokoderna att dimensionering genom beräkning primärt skall utföras med hjälp av partialkoefficientmetoden eller tillförlitlighetsbaserade metoder. Grundprincipen i båda dessa metoder är att det skall säkerställas att en konstruktions bärförmåga, med tillräckligt hög sannolikhet, är större än lasten som verkar mot konstruktionen. Även om detta kan förefalla enkelt så har den praktiska användningen av framförallt tillförlitlighetsbaserade metoder inom bergbyggande endast studerats i begränsad utsträckning.Målet med detta projekt har varit att utveckla tillförlitlighetsbaserade metoder för miljömässig och ekonomisk optimering av förstärkning i tunnlar med fokus på sprutbetongförstärkning. För att uppnå detta, syftar denna avhandling till att (1) utvärdera tillämpbarheten av partialkoefficient metoden och tillförlitlighetsbaserade metoder för dimensionering av sprutbetongförstärkning, (2) kvantifiera storleken och osäkerheten i sprutbetongförstärkningens indata parametrar och (3) utvärdera effekten från rumslig spridning på sprutbetongens bärförmåga.Avhandlingen visar att partialkoefficientmetoden inte är lämplig att använda vid dimensionering av förstärkning i tunnlar. En tillförlitlighetsbaserad dimensioneringsmetodik för sprutbetong med avseende på blockutfall mellan bultar samt en dimensioneringsmetodik för tunnel-lining av sprutbetong baserad på observationsmetoden och tillförlitlighetsbaserade metoder har utvecklats inom ramen av denna avhandling. De utvecklade metodikerna möjliggör optimering av förstärkning och tunnel-lining av sprutbetong genom att stringent ta hänsyn till osäkerheter kopplade till indata kontinuerligt genom hela designprocessen. Avhandlingen diskuterar även den begränsade kunskap vi har om våra beräkningsmodeller samt vilka förtydliganden som bör göras i framtida revideringar av Eurokoderna kopplade till riktvärden för kravställda brottsannolikheter och definitionen av brott.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 61
Series
TRITA-ABE-DLT ; 208
Keywords
Rock engineering, reliability-based design, Eurocode 7, observational method, tunnel engineering, Bergmekanik, sannolikhetsbaserad dimensionering, Eurokod 7, observationsmetoden, tunnelbyggnad
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-272722 (URN)978-91-7873-522-8 (ISBN)
Public defence
2020-05-28, Via Zoom - https://kth-se.zoom.us/j/490988607, Du som saknar dator/datorvana kan kontakta fredrik.johansson@byv.kth.se för information / Use the e-mail address if you need technical assistance, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20200506

Available from: 2020-05-06 Created: 2020-04-27 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bjureland, WilliamSpross, JohanJohansson, FredrikPrästings, AndersLarsson, Stefan

Search in DiVA

By author/editor
Bjureland, WilliamSpross, JohanJohansson, FredrikPrästings, AndersLarsson, Stefan
By organisation
Soil and Rock Mechanics
In the same journal
Geotechnical Special Publication
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 655 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf