Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ego-Motion Estimation of Drones
KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Positionsestimering för drönare (Swedish)
Abstract [en]

To remove the dependency on external structure for drone positioning in GPS-denied environments, it is desirable to estimate the ego-motion of drones on-board. Visual positioning systems have been studied for quite some time and the literature on the area is diligent. The aim of this project is to investigate the currently available methods and implement a visual odometry system for drones which is capable of giving continuous estimates with a lightweight solution. In that manner, the state of the art systems are investigated and a visual odometry system is implemented based on the design decisions. The resulting system is shown to give acceptable estimates. 

Abstract [sv]

För att avlägsna behovet av extern infrastruktur så som GPS, som dessutominte är tillgänglig i många miljöer, är det önskvärt att uppskatta en drönares rörelse med sensor ombord. Visuella positioneringssystem har studerats under lång tid och litteraturen på området är ymnig. Syftet med detta projekt är att undersöka de för närvarande tillgängliga metodernaoch designa ett visuellt baserat positioneringssystem för drönare. Det resulterande systemet utvärderas och visas ge acceptabla positionsuppskattningar.

Place, publisher, year, edition, pages
2017. , p. 61
Keywords [en]
drones, computer vision, visual positioning, visual odometry, visual SLAM
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-210772OAI: oai:DiVA.org:kth-210772DiVA, id: diva2:1119829
Subject / course
Computer Science
Educational program
Master of Science - Systems, Control and Robotics
Supervisors
Examiners
Available from: 2017-09-19 Created: 2017-07-05 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(3188 kB)138 downloads
File information
File name FULLTEXT01.pdfFile size 3188 kBChecksum SHA-512
5249d23fc12647a17f91c4fb05dc2e6d05a4fac4659ca5d4125466d1e88c22ad4bfcdded49d4e9aa8c3c14f3c2d86df375640b034f58487e3ece00af5f565d05
Type fulltextMimetype application/pdf

By organisation
Robotics, perception and learning, RPL
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 138 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 352 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf