We present a system for creating object modelsfrom RGB-D views acquired autonomously by a mobile robot.We create high-quality textured meshes of the objects byapproximating the underlying geometry with a Poisson surface.Our system employs two optimization steps, first registering theviews spatially based on image features, and second aligningthe RGB images to maximize photometric consistency withrespect to the reconstructed mesh. We show that the resultingmodels can be used robustly for recognition by training aConvolutional Neural Network (CNN) on images rendered fromthe reconstructed meshes. We perform experiments on datacollected autonomously by a mobile robot both in controlledand uncontrolled scenarios. We compare quantitatively andqualitatively to previous work to validate our approach.
QC 20171009