kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reliability aspects of rock tunnel design with the observational method
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.ORCID iD: 0000-0002-9835-7053
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.ORCID iD: 0000-0001-5372-7519
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-8152-6092
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.ORCID iD: 0000-0001-5243-4650
Show others and affiliations
2017 (English)In: International Journal of Rock Mechanics And Mining Sciences, ISSN 1365-1609, E-ISSN 1873-4545, Vol. 98, p. 102-110Article in journal (Refereed) Published
Abstract [en]

According to Eurocode 7, two accepted approaches for managing uncertainty in tunnel design are reliability based methods and the observational method. Reliability-based methods account for uncertainty by acknowledging the random variation of the input parameters; the observational method does this by verifying the expected behavior from an initial design during the course of construction. However, in the framework of the observational method, as defined in Eurocode 7, no guidance is given on the selection of suitable parameters for observation and how they can be linked to the limits of acceptable behavior and, at a sufficiently early stage, the decision for implementing contingency actions. Furthermore, no guidance is given on how to verify that the structure fulfills society's required safety level. In this paper, we present a design procedure for shotcrete-supported rock tunnels that combines reliability-based methods with the observational method. The design procedure applies a deformation-based limit state function for the shotcrete support that is based on the convergence confinement method. We suggest how the requirements in the observational method, as defined in Eurocode 7, may be satisfied for this application. In particular, we focus on the structural reliability aspects. The structural reliability of the preliminary design is assessed with Monte Carlo simulations by calculating the expected deformations of the tunnel. The appropriateness of the preliminary design is then verified by observing the actual deformations during the course of construction. The observed deformations are used to predict the future behavior of the tunnel and to update the assessed probability of unsatisfactory behavior. If the defined deformation-based alarm limit regarding the structural reliability is exceeded, predefined contingency actions are put into operation. The procedure is illustrated with a shotcrete-lined circular rock tunnel and practical aspects in satisfying the reliability requirements with the observational method are discussed.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2017. Vol. 98, p. 102-110
Keywords [en]
Rock engineering, Tunnel, Observational method, Reliability-based methods, Eurocode 7
National Category
Geotechnical Engineering and Engineering Geology
Identifiers
URN: urn:nbn:se:kth:diva-215786DOI: 10.1016/j.ijrmms.2017.07.004ISI: 000412037200010Scopus ID: 2-s2.0-85030526478OAI: oai:DiVA.org:kth-215786DiVA, id: diva2:1150272
Note

QC 20171018

QC 20191008

Available from: 2017-10-18 Created: 2017-10-18 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Reliability-based design of rock tunnel support
Open this publication in new window or tab >>Reliability-based design of rock tunnel support
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since 2009, design of rock tunnels can be performed in accordance with the Eurocodes, which allows that different design methodologies are applied, such as design by calculation or design using the observational method. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using the partial factor method or reliability-based methods. The basic principle of both of these methods is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with sufficiently high probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent.The overall aim of this project has been to develop reliability-based methods for environmental and economic optimization of rock tunnel support, with a special focus on shotcrete support. To achieve this, this thesis aims to: (1) assess the applicability of the partial factor method and reliability-based methods for design of shotcrete support, exclusively or in combination with the observational method, (2) quantify the magnitude and uncertainty of the shotcrete’s input parameters, and (3) assess the influence from spatial variability on shotcrete’s load-bearing capacity and judge the correctness of the assumption that the load-bearing capacity of the support is governed by the mean values of its input parameters.The thesis shows that the partial factor method is not suitable, and in some cases not applicable, to use in design of rock tunnel support. Instead, the thesis presents a reliability-based design methodology for shotcrete in rock tunnels with respect to loose blocks between rockbolts and a design methodology for shotcrete lining based on a combination of the observational method and reliability-based methods. The presented design methodologies enable optimization of the shotcrete support and shotcrete lining by stringently accounting for uncertainties related to input data throughout the design process. The thesis also discusses the limited knowledge that we as an industry sometimes have in our calculation models and the clarifications that should be made in future revisions of the Eurocode related to target reliability and the definition of failure.

Abstract [sv]

Sedan 2009 kan dimensionering av bergtunnlar utföras i enlighet med Eurokoderna, vilka tillåter att olika dimensioneringsmetoder tillämpas, såsom dimensionering genom beräkning eller dimensionering med observationsmetoden. För att ta hänsyn till osäkerheter föreskriver Eurokoderna att dimensionering genom beräkning primärt skall utföras med hjälp av partialkoefficientmetoden eller tillförlitlighetsbaserade metoder. Grundprincipen i båda dessa metoder är att det skall säkerställas att en konstruktions bärförmåga, med tillräckligt hög sannolikhet, är större än lasten som verkar mot konstruktionen. Även om detta kan förefalla enkelt så har den praktiska användningen av framförallt tillförlitlighetsbaserade metoder inom bergbyggande endast studerats i begränsad utsträckning.Målet med detta projekt har varit att utveckla tillförlitlighetsbaserade metoder för miljömässig och ekonomisk optimering av förstärkning i tunnlar med fokus på sprutbetongförstärkning. För att uppnå detta, syftar denna avhandling till att (1) utvärdera tillämpbarheten av partialkoefficient metoden och tillförlitlighetsbaserade metoder för dimensionering av sprutbetongförstärkning, (2) kvantifiera storleken och osäkerheten i sprutbetongförstärkningens indata parametrar och (3) utvärdera effekten från rumslig spridning på sprutbetongens bärförmåga.Avhandlingen visar att partialkoefficientmetoden inte är lämplig att använda vid dimensionering av förstärkning i tunnlar. En tillförlitlighetsbaserad dimensioneringsmetodik för sprutbetong med avseende på blockutfall mellan bultar samt en dimensioneringsmetodik för tunnel-lining av sprutbetong baserad på observationsmetoden och tillförlitlighetsbaserade metoder har utvecklats inom ramen av denna avhandling. De utvecklade metodikerna möjliggör optimering av förstärkning och tunnel-lining av sprutbetong genom att stringent ta hänsyn till osäkerheter kopplade till indata kontinuerligt genom hela designprocessen. Avhandlingen diskuterar även den begränsade kunskap vi har om våra beräkningsmodeller samt vilka förtydliganden som bör göras i framtida revideringar av Eurokoderna kopplade till riktvärden för kravställda brottsannolikheter och definitionen av brott.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 61
Series
TRITA-ABE-DLT ; 208
Keywords
Rock engineering, reliability-based design, Eurocode 7, observational method, tunnel engineering, Bergmekanik, sannolikhetsbaserad dimensionering, Eurokod 7, observationsmetoden, tunnelbyggnad
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-272722 (URN)978-91-7873-522-8 (ISBN)
Public defence
2020-05-28, Via Zoom - https://kth-se.zoom.us/j/490988607, Du som saknar dator/datorvana kan kontakta fredrik.johansson@byv.kth.se för information / Use the e-mail address if you need technical assistance, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20200506

Available from: 2020-05-06 Created: 2020-04-27 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bjureland, WilliamSpross, JohanJohansson, FredrikPrästings, AndersLarsson, Stefan

Search in DiVA

By author/editor
Bjureland, WilliamSpross, JohanJohansson, FredrikPrästings, AndersLarsson, Stefan
By organisation
Civil and Architectural EngineeringSoil and Rock Mechanics
In the same journal
International Journal of Rock Mechanics And Mining Sciences
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 395 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf