We investigate the dynamics of a class of smooth maps of the two-torus T2 of the form T(x, y) = (Nx, f(x)(y)), where f(x) : T -> T is a monotone family (in x) of orientation preserving circle diffeomorphisms and N is an element of Z(+) is large. For our class of maps, we show that the dynamics essentially is the same as that of the projective action of non-uniformly hyperbolic SL(2, R)-cocycles. This generalizes a result by L.S. Young [6] to maps T outside the (projective) matrix cocycle case.
QC 20180504