kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed time synchronization for networks with random delays and measurement noise
KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-9940-5929
2018 (English)In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 93, p. 126-137Article in journal (Refereed) Published
Abstract [en]

In this paper a new distributed asynchronous algorithm is proposed for time synchronization in networks with random communication delays, measurement noise and communication dropouts. Three different types of the drift correction algorithm are introduced, based on different kinds of local time increments. Under nonrestrictive conditions concerning network properties, it is proved that all the algorithm types provide convergence in the mean square sense and with probability one (w.p.1) of the corrected drifts of all the nodes to the same value (consensus). An estimate of the convergence rate of these algorithms is derived. For offset correction, a new algorithm is proposed containing a compensation parameter coping with the influence of random delays and special terms taking care of the influence of both linearly increasing time and drift correction. It is proved that the corrected offsets of all the nodes converge in the mean square sense and w.p.1. An efficient offset correction algorithm based on consensus on local compensation parameters is also proposed. It is shown that the overall time synchronization algorithm can also be implemented as a flooding algorithm with one reference node. It is proved that it is possible to achieve bounded error between local corrected clocks in the mean square sense and w.p.1. Simulation results provide an additional practical insight into the algorithm properties and show its advantage over the existing methods.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 93, p. 126-137
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-227532DOI: 10.1016/j.automatica.2018.03.054ISI: 000436916200015Scopus ID: 2-s2.0-85044584487OAI: oai:DiVA.org:kth-227532DiVA, id: diva2:1206901
Funder
EU, FP7, Seventh Framework Programme, PCIG12-GA-2012-334098Knut and Alice Wallenberg FoundationSwedish Foundation for Strategic Research Swedish Research Council
Note

QC 20180518

Available from: 2018-05-18 Created: 2018-05-18 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Johansson, Karl H.

Search in DiVA

By author/editor
Johansson, Karl H.
By organisation
ACCESS Linnaeus Centre
In the same journal
Automatica
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 207 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf