kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal Reflow Engineered Cylindrical Polymer Waveguides for Optical Interconnects
KTH, School of Engineering Sciences (SCI).ORCID iD: 0000-0002-0728-6684
Show others and affiliations
2018 (English)In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 30, no 5, p. 447-450Article in journal (Refereed) Published
Abstract [en]

Integrated polymer photonics brings low cost and high fabrication flexibility to optoelectronic industry. However, this platform needs to overcome several issues to be effective enough for practical applications. In this letter, we experimentally demonstrate a decrease of propagation losses and polarization sensitivity of polymer waveguide-based devices as a result of thermal treatment. Heating of poly(methyl methacrylate) strip optical waveguides above the glass transition temperature initiates a waveguide surface reflow due to a decrease of the polymer viscosity and surface tension energy. This results in a decrease of surface roughness and shape change from rectangular to cylindrical. Thus, scattering losses and polarization sensitivity are minimized. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2018. Vol. 30, no 5, p. 447-450
Keywords [en]
Integrated optics, optical interconnections, optical polymers, Esters, Glass transition, Light polarization, Optical interconnects, Optical sensors, Optical waveguides, Polarization, Surface roughness, Waveguide components, Waveguides, Integrated polymers, Optical attenuators, Optical device fabrication, Optoelectronic industry, Polarization sensitivity, Polymer waveguides, Waveguide surfaces, Polymers
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-227403DOI: 10.1109/LPT.2018.2797685ISI: 000429172600005Scopus ID: 2-s2.0-85040999156OAI: oai:DiVA.org:kth-227403DiVA, id: diva2:1210666
Note

Export Date: 9 May 2018; Article; CODEN: IPTLE; Correspondence Address: Marinins, A.; School of Engineering Sciences, KTH Royal Institute of TechnologySweden; email: marinin@kth.se; Funding details: 608099; Funding details: SEAS, Harvard School of Engineering and Applied Sciences; Funding details: 324391; Funding details: 2016-04510; Funding details: Knut och Alice Wallenbergs Stiftelse; Funding details: KTH, Kungliga Tekniska Högskolan; Funding text: Manuscript received March 14, 2017; revised January 21, 2018; accepted January 22, 2018. Date of publication January 24, 2018; date of current version February 12, 2018. This work was supported in part by EU Project ICONE under Grant 608099, in part by the EU Project GRIFFON under Grant 324391, in part by the Swedish ICT-TNG Program, in part by the Vetenskapsrädet Project PHASE under Grant 2016-04510, and in part by the Knut and Alice Wallenberg Foundation. (Corresponding author: Aleksandrs Marinins.) A. Marinins, A. Kakkar, R. Schatz, and S. Popov are with the School of Engineering Sciences, KTH Royal Institute of Technology, 10044 Stockholm, Sweden (e-mail: marinin@kth.se; adityak@kth.se; rschatz@kth.se; sergeip@kth.se). QC 20180529

Available from: 2018-05-29 Created: 2018-05-29 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Marinins, AleksandrsKakkar, AdityaSchatz, RichardPopov, Sergei

Search in DiVA

By author/editor
Marinins, AleksandrsKakkar, AdityaSchatz, RichardPopov, Sergei
By organisation
School of Engineering Sciences (SCI)
In the same journal
IEEE Photonics Technology Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf