Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamics and Reactions of Molecular Ru Catalysts at Carbon Nanotube-Water Interfaces
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-1553-4027
2018 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 140, no 24, p. 7498-7503Article in journal (Refereed) Published
Abstract [en]

Immobilization of molecular catalysts to electrode surfaces can improve the recyclability and electron transfer rates. The drawback is that most experimental techniques and theoretical methods are not applicable. Here we present results from a study of a ruthenium water oxidation catalyst [(RuO)-O-V(bda)L-2] in explicit water at a carbon nanotube water interface, forming the key O-O bond between two 128 atom catalysts, all fully dynamically. Our methodology is based on a recently developed empirical valence bond (EVB) model. We follow the key steps of the reaction including diffusion of the catalysts at the interface, formation of the prereactive dimer, and the bond formation between the two catalysts. On the basis of the calculated parameters, we compute the turnover frequency (TOF) at the experimental loading, in excellent agreement with the experiments. The key O-O bond formation was significantly retarded at the surface, and limiting components were identified that could be improved by catalyst modification.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 140, no 24, p. 7498-7503
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-232254DOI: 10.1021/jacs.8b00433ISI: 000436211600026PubMedID: 29798669Scopus ID: 2-s2.0-85047638616OAI: oai:DiVA.org:kth-232254DiVA, id: diva2:1233940
Funder
Swedish Research Council
Note

QC 20180720

Available from: 2018-07-20 Created: 2018-07-20 Last updated: 2018-07-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Zhan, ShaoqiAhlquist, Mårten S. G.

Search in DiVA

By author/editor
Zhan, ShaoqiAhlquist, Mårten S. G.
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of the American Chemical Society
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf