kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An algorithm for calculating top-dimensional bounding chains
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-8750-0897
CUNY, Math Dept, Coll Staten Isl, New York, NY 10021 USA..
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-2965-2953
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-1114-6040
2018 (English)In: PEERJ COMPUTER SCIENCE, ISSN 2376-5992, article id e153Article in journal (Refereed) Published
Abstract [en]

We describe the Coefficient-Flow algorithm for calculating the bounding chain of an (n-1)-boundary on an n-manifold-like simplicial complex S. We prove its correctness and show that it has a computational time complexity of O(vertical bar S(n-1)vertical bar) (where S(n-1) is the set of (n-1)-faces of S). We estimate the big-O coefficient which depends on the dimension of S and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system.

Place, publisher, year, edition, pages
PEERJ INC , 2018. article id e153
Keywords [en]
Homology, Computational algebraic topology
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-232420DOI: 10.7717/peerj-cs.153ISI: 000437236300001PubMedID: 33816807Scopus ID: 2-s2.0-85074143181OAI: oai:DiVA.org:kth-232420DiVA, id: diva2:1235328
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council
Note

QC 20180725

Available from: 2018-07-25 Created: 2018-07-25 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Topological Methods for Motion Prediction and Caging
Open this publication in new window or tab >>Topological Methods for Motion Prediction and Caging
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To fulfill the requirements of automation in unstructured environmentsit will be necessary to endow robots with the ability to plan actions thatcan handle the dynamic nature of changing environments and are robust toperceptual errors. This thesis focuses on the design of algorithms to facilitatemotion planning in human environments and rigid object manipulation.Understanding human motion is a necessary first step to be able to performmotion planning in spaces that are inhabited by humans. Specifically throughlong-term prediction a robot should be able to plan collision-avoiding paths tocarry out whatever tasks are required of it. In this thesis we present a methodto classify motions by clustering paths, together with a method to translatethe resulting clusters into motion patterns that can be used to predict motion.Another challenge of robotics is the manipulation of everyday objects.Even in the realm of rigid objects, safe object-manipulation by either grippersor dexterous robotic hands requires complex physical parameter estimation.Such estimations are often error-prone and misestimations may cause completefailure to execute the desired task. Caging is presented as an alternativeapproach to classical manipulation by employing topological invariants todetermine whether an object is secured with only bounded mobility. Wepresent a method to decide whether a rigid object is in fact caged by a givengrasp or not, relying only on a rough approximation of the object and thegripper.

Abstract [sv]

För att uppfylla kraven för automatisering i ostrukturerade miljöer ärdet nödvändigt att förse robotar med förmågan att planera i föränderligamiljöer. Denna avhandling fokuserar på design av algoritmer för att underlättarörelseplanering i mänskliga miljöer och manipulering av rigida objekt.För att planera handlingar i utrymmen där människor rör sig är detnödvändigt, som ett första steg, att förstå hur människor rör sig. Genom långsiktigaprognoser om människors rörelser kan en robot planera undvikande avkollisioner, samtidigt som en given uppgift kan planeras. Den här avhandlingenpresenterar både metoder för klassificering av rörelser, samt metoder för attanvända dessa klasser för förutsägelse av rörelser.En annan stor utmaning för robotik är manipulering av vardagliga objekt.För att manipulera rigida objekt med enkla gripdon, så väl som avanceraderobothänder, är det nödvändigt att uppskatta komplexa fysiska parametrar.Sådana uppskattningar innehar ofta fel som kan leda till misslyckande med attutföra den givna uppgiften. Caging är ett alternativ till klassisk manipulering,där topologiska invarianter används för att avgöra om ett objekt är säkratmed endast begränsad rörlighet. Vi presenterar en metod för att bestämmaom en konfiguration kan hålla ett objekt fast eller inte, som bara förlitar sigpå en förenklad modell av objekt och gripdon.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2020
Series
TRITA-EECS-AVL ; 2020:11
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-268370 (URN)978-91-7873-450-4 (ISBN)
Public defence
2020-03-17, F3, Lindstedtsvägen 26, 114 28 Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20200221

Available from: 2020-02-21 Created: 2020-02-18 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(1381 kB)218 downloads
File information
File name FULLTEXT01.pdfFile size 1381 kBChecksum SHA-512
dbe35035395bdfad16057cd48bbf3a608527406d7bdd145fedb60eef1fb168892ecd4fab7d9f158e804de1d14e8ede5e9613ad46b08e77f29d23c534082f68da
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Carvalho, Joao FredericoKragic, DanicaPokorny, Florian T.

Search in DiVA

By author/editor
Carvalho, Joao FredericoKragic, DanicaPokorny, Florian T.
By organisation
Robotics, Perception and Learning, RPL
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 218 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 525 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf