kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Safe Stop Trajectory Planning for Highly Automated Vehicles:An Optimal Control Problem Formulation
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Embedded Control Systems. (Autonomous Driving)ORCID iD: 0000-0001-6492-1966
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Embedded Control Systems.ORCID iD: 0000-0001-9314-545x
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
Show others and affiliations
2018 (English)In: 2018 IEEE Intelligent Vehicles Symposium (IV), Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 517-522, article id 8500536Conference paper, Published paper (Refereed)
Abstract [en]

Highly automated road vehicles need the capabilityof stopping safely in a situation that disrupts continued normaloperation, e.g. due to internal system faults. Motion planningfor safe stop differs from nominal motion planning, since thereis not a specific goal location. Rather, the desired behavior isthat the vehicle should reach a stopped state, preferably outsideof active lanes. Also, the functionality to stop safely needs tobe of high integrity. The first contribution of this paper isto formulate the safe stop problem as a benchmark optimalcontrol problem, which can be solved by dynamic programming.However, this solution method cannot be used in real-time. Thesecond contribution is to develop a real-time safe stop trajectoryplanning algorithm, based on selection from a precomputedset of trajectories. By exploiting the particular properties ofthe safe stop problem, the cardinality of the set is decreased,making the algorithm computationally efficient. Furthermore, amonitoring based architecture concept is proposed, that ensuresdependability of the safe stop function. Finally, a proof of conceptsimulation using the proposed architecture and the safe stoptrajectory planner is presented.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018. p. 517-522, article id 8500536
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:kth:diva-232815DOI: 10.1109/IVS.2018.8500536ISI: 000719424500084Scopus ID: 2-s2.0-85056784560OAI: oai:DiVA.org:kth-232815DiVA, id: diva2:1236532
Conference
2018 IEEE Intelligent Vehicles Symposium, IV 2018; Changshu, Suzhou; China; 26 September 2018 through 30 September 2018
Note

QC 20220927

Available from: 2018-08-02 Created: 2018-08-02 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Motion Planning and Control of Automated Vehicles in Critical Situations
Open this publication in new window or tab >>Motion Planning and Control of Automated Vehicles in Critical Situations
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The road traffic environment is inherently uncertain and unpredictable. An automated vehicle (AV) deployed in such an environment will eventually experience unforeseen critical situations, i.e., situations in which the probability of having an accident is rapidly increased compared to a nominal driving situation. Critical situations can occur for example due to internal faults or performance limitations of the AV, abrupt changes in operational conditions or unexpected behavior from other road users. In such critical situations, the first priority for vehicle motion control is to reduce the risk of imminent accident. If needed, the full physical capacity of the vehicle should be employed to accomplish this. These unique circumstances distinguish automated driving in critical situations from the nominal case. 

This work aims to tackle the problem of motion planning and control in such critical situations. We determine a set of characteristics that signify the motion planning and control problem in critical situations, in relation to state of the art algorithms. Further, we incrementally develop a motion planning and control framework, tailored for the particular circumstances of critical situations. In its current form, the framework uses a combination of numerical optimization, trajectory rollout and constraint adaptation, to allow motion planning and control with respect to time-varying actuation capabilities, while realizing a range of behaviors to mitigate accident risk in a range of critical situations. 

Results for the research work are generated by exposing the framework to several categories of critical situations in a combination of simulations and full scale vehicle tests. We present the following main findings: (1) Inclusion of risk levels of stopping locations at the local planning level generates satisfactory motion behavior in the evaluated critical situations, enabling a combined assessment of risk of the maneuver and of the stopping location. (2) Traction adaptive motion planning and control improves the capacity of autonomous vehicles to reduce accident risk in critical situations, both when adapting to deteriorated and when adapting to improved traction in a range of tested critical situations. (3) State of the art friction estimation algorithms are insufficient for traction adaptive motion planning in terms of combined requirements on accuracy, availability and foresight. However, fusion of multiple estimation paradigms show potential to yield near-optimal performance. 

The combined contributions of this thesis are intended as a step towards further improving accident avoidance performance of automated vehicles and driver assistance systems in critical situations. However, much research work remains to be done in this field. We emphasize the need for further research efforts in terms of experimentally evaluating the impact of motion planning and control concepts on accident avoidance performance in critical situations. 

Abstract [sv]

Vägtrafikmiljön är oförutsägbar. Autonoma vägfordon i en sådan miljö kommer tids nog att hamna i oförutsedda kritiska situationer, det vill säga situationer där risken för en trafikolycka är markant högre än vid nominell körning. Kritiska situationer kan orsakas av exempelvis interna fel eller prestandabegränsningar hos autonomisystemet, av plötsliga förändringar i operationella förhållanden eller av oförutsett agerande hos medtrafikanter. I kritiska situationer är passagerarkomfort inte längre en prioritet, utan fordonets fullständiga manöverförmåga kan utnyttjas för att minimera olycksrisken. Dessa omständigheter skiljer autonom körning i kritiska situationer från det nominella fallet.  

 

Forskningsinriktningen för denna avhandling är rörelseplanering och styrning av autonoma fordon i kritiska situationer. Vi presenterar en uppsättning egenskaper som kännetecknar detta specifika problem, i relation till ledande algoritmer för rörelseplanering och styrning. Vi presenterar också vår egen stegvis utvecklade metod för att angripa problemet. I sin nuvarande form består metoden av en kombination av optimeringsbaserad och samplingsbaserad trajektorieplanering med tidsvarierande dynamik och bivillkor. Metoden gör det möjligt att representera tidsvarierande dynamik och dynamiska begränsningar hos fordonet (till exempel till följd av varierande vägförhållanden) vid planering av en mängd olika manövertyper som kan minska olycksrisken i kritiska situationer. 

 

Resultaten i forskningsarbetet har genererats genom att testa metoden i ett flertal typer av kritiska situationer som har iscensatts genom en kombination av simuleringsmiljöer och experiment med fullskaliga autonoma testfordon. De huvudsakliga slutsatserna från forskningsarbetet är följande: (1) Att inkludera risknivån hos alternativa stoppositioner på den lokala planeringsnivån genererar tillfredsställande rörelsebeteende vid exempelvis interna fel hos autonomisystemet. Detta möjliggör en sammantagen riskbedömning för manöver och stopposition. (2) Väglagsanpassad rörelseplanering och styrning förbättrar autonoma fordons förmåga att reducera olycksrisk i kritiska situationer, både vid anpassning till försämrade och till förbättrade vägförhållanden. (3) Ledande metoder för skattning av vägfriktion har inte tillfredställande prestanda för väglagsanpassad rörelseplanering och styrning med avseende på kombinerade krav på precision, tillgänglighet och framsynthet, när de används var för sig. Dock är det möjligt att kombinera estimat från olika sensorslag till ett friktionsestimat som ger närmast optimalt rörelsebeteende då det används i kombination med väglagsanpassad rörelseplanering och styrning.

 

Vår förhoppning är att de sammanlagda forskningsbidragen från denna avhandling kan komma att bidra till fortsatta prestandaförbättringar hos system avsedda att minska olycksrisken i kritiska situationer, både för autonoma fordon och för förarstödsystem. Det finns dock mycket kvar att göra inom detta forskningsfält. Vi vill särskilt framhäva behovet av ytterligare forskningsinitiativ rörande experimentell utvärdering av nya koncept för rörelseplanering och styrning, med avseende på förmågan att minska olycksrisken i kritiska situationer.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 87
Series
TRITA-ITM-AVL ; 2021: 23
National Category
Robotics and automation
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-294257 (URN)978-91-7873-891-5 (ISBN)
Public defence
2021-06-08, https://kth-se.zoom.us/j/64776462170, Stockholm, 15:00 (English)
Opponent
Supervisors
Available from: 2021-05-17 Created: 2021-05-12 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(870 kB)2142 downloads
File information
File name FULLTEXT02.pdfFile size 870 kBChecksum SHA-512
39b11526d7f09f3e5b3562b8de2d03d944b079947435cced32edc10e05034ffe46e0b099871120ea77c3880b969556b06cf5b9556995b6628c615b6c84a1df0d
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusConference

Authority records

Svensson, LarsMohan, NaveenWard, ErikPernestål Brenden, AnnaFeng, LeiTörngren, Martin

Search in DiVA

By author/editor
Svensson, LarsMohan, NaveenWard, ErikPernestål Brenden, AnnaFeng, LeiTörngren, Martin
By organisation
Embedded Control SystemsRobotics, Perception and Learning, RPLIntegrated Transport Research Lab, ITRL
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 2179 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 823 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf